

KPR Institute of Engineering and Technology Great Place

Work.

Certified

INDIA

 \bigcirc

То

(Autonomous, NAAC "A")

Avinashi Road, Arasur, Coimbatore.

B.E. – Mechanical Engineering Curriculum and Syllabi Regulations – 2021

kpriet.edu.in 🚯 🞯 🙄 🖸 🌀 /KPRIETonline

I. Vision and Mission of the Institute

Vision

To become a premier institute of academic excellence by imparting technical, intellectual and professional skills to students for meeting the diverse needs of the industry, society, the nation and the world at large.

Mission

- Commitment to offer value-based education and enhancement of practical skills
- Continuous assessment of teaching and learning process through scholarly activities
- Enriching research and innovative activities in collaboration with industry and institute of repute
- Ensuring the academic process to uphold culture, ethics and social responsibility

II. Vision and Mission of the Department

Vision

To be recognized as a premier centre in the field of mechanical engineering education, research and development to meet the changing needs of industry and society

Mission

The Department of Mechanical Engineering is committed to

- Provide fundamental and skill-based education in mechanical engineering through innovative practicesin teaching and leaning
- * Collaborate with reputed industries, professional bodies and research laboratories for establishingCentre of Excellence
- Imbibe ethical behavior and morality for social upliftment to uphold human values

III. Program Educational Objectives (PEOs)

The Program Educational Objectives (PEOs) of the Mechanical Engineering (ME) represent major accomplishments that the graduates are expected to achieve after three to five years of graduation. PEO1: Have a successful professional career in their related field of engineering to meet the changingneeds of various stakeholders-

PEO2: Involve in technology advancements through continuing education.

PEO3: Practice their profession with good leadership skills and ethical values.

IV. Program Outcomes (POs)

A Graduate of Mechanical Engineering should

PO 1 Engineering knowledge: Apply the knowledge mathematics, science, engineering Fundamentals and an engineering specialization to the solution of complex engineering problems.

PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration

PO 4 Conduct investigations of complex problems: Use research-based knowledge and

2240124

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

research methods including design of experiments, analysis and interpretation of data, and synthesis of theinformation to provide valid conclusions.

PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10 Communication: Communicate effectively on complex Engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in ateam, to manage projects and in multidisciplinary environments.

PO 12 Life–long learning: Recognize the need for, and have the preparation and ability to engage in independent and life–long learning in the broadest context of technological change.

V. Program Specific Outcomes (PSOs)

A Graduate of Mechanical Engineering should

PSO 1: Apply mechanical engineering principles to design, develop and implement advanced machine/mechanical systems or process for better performance and less human effort.

PSO 2: Ensure quality by applying quality tools, maintenance principles and managerial skills to comprehend the mechanical engineering processes, products and services.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

Ċ,

B.E. MECHANICAL ENGINEERING

neerin

Centre for Academic

Courses

Coimbato

nstitu

KPRIET

REGULATIONS - 2021

For the students admitted 2021 onwards

CHOICE BASED CREDIT SYSTEM

CURRICULUM FOR I - VIII SEMESTERS

SEMESTER I

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т.	Ρ	J	C
		THEORY COURSES				_		
1	U21MA101	Calculus and Differential Equations	BSC	3	1	0	0	4
	Т	HEORY COURSE WITH LABORATO	RY COMPONE	NT				
2	U21EN101	English for Technologist	HSMC	1	0	2	0	2
3	U21CSG01	Problem Solving and C Programming	ESC	2	0	2	0	3
4	U21PH101	Engineering Physics	BSC	2	0	2	0	3
5	U21CY101	Engineering Chemistry	BSC	2	0	2	0	3
		LABORATORY COURS	SES	100				-
6	U21MEG01	Engineering Graphics	ESC	0	0	4	0	2
7	U21MEG02	Manufacturing Practices	ESC	0	0	3	0	2
		MANDATORY NON-CREDIT	COURSES					
8	U21MYC01	Induction program	MNC		Thre	ee W	eeks	
			TOTAL	10	1	15	0	1

SEMESTER II

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	С
	1	THEORY COURSES	3					
1	U21MA201	Laplace Transforms and Complex Variables	BSC	3	1	0	0	4
2	U21EEG02	Basics of Electrical Engineering	ESC	3	0	0	0	3
3	U21ME201	Engineering Mechanics	PCC	3	0	0	0	3
4	U21PH201	Materials Science	BSC	2	0	0	0	2
	Т	HEORY COURSE WITH LABORATO	RY COMPONE	NT				
5	U21EN201	Personality Enhancement	HSMC	1	0	2	0	2
6	U21CSG02	Python Programming	ESC	2	0	2	0	3
7	U21ECG02	Basics of Electronics Engineering	ESC	2	0	2	0	3
		LABORATORY COURS	SES					
8	U21ME202	Interfacing of Electronics & Electrical components and Troubleshooting	ESC	0	0	3	0	2
		MANDATORY NON-CREDIT	COURSES				10-	_
9	U21MYC02	Environmental Science	MNC	1	0	0	0	0
			TOTAL	17	1	9	0	22

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER III

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Ρ	J	с
		THEORY COURSES	3					
1	U21MA303	Fourier Analysis and Boundary Value Problems	BSC	3	1	0	0	4
2	U21ME301	Engineering Thermodynamics	PCC	3	1	0	0	4
3	U21ME302	Manufacturing Technology-I	PCC	3	0	0	0	3
4	U21ME303	Engineering Materials and Metallurgy	PCC	3	0	0	0	3
		HEORY COURSE WITH LABORATO THEORY COURSE WITH PROJEC	T COMPONENT		-			•
5	U21ME304	Fluid Mechanics and Applications	PCC	2	0	2	0	3
6	U21ME305	Mechanics of Solids	PCC	3	0	2	0	4
LA	BORATORY	COURSES / LABORATORY COURS	E WITH PROJEC	стс	OMP	ONE	NT	
7	U21ME306	Manufacturing Technology Laboratory – I	PCC	0	0	4	2	3
		MANDATORY NON-CREDIT	COURSES			4		
8	U21MYC03	Essence of Indian Traditional Knowledge	MNC	1	0	0	0	0

SEMESTER IV

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	С
		THEORY COURSES	S			U.a		
1	U21MA404	Statistics and Numerical Methods	BSC	3	0	0	0	3
2	U21ME401	Manufacturing Technology-II	PCC	3	0	0	0	3
3	U21XE	Open Elective – I	OEC	3	0	0	0	3
	ТІ	HEORY COURSE WITH LABORATO THEORY COURSE WITH PROJEC						
4	U21ME402	Theory of Machines	PCC	3	0	2	0	4
5	U21ME403	Thermal Engineering	PCC	2	0	2	0	3
6	U21ME404	Sensors and Transducers	PCC	2	0	0	2	3
LA	BORATORY	COURSES / LABORATORY COURS	E WITH PROJE	СТС	OMP	PONE	NT	
7	U21ME405	Computer Aided Modelling and Assembly Laboratory	PCC	0	0	4	0	2
8	U21ME406	Manufacturing Technology Laboratory –II	PCC	0	0	4	0	2
9	U21SSG01	Soft Skills – I	HSMC	0	0	2	0	1
		MANDATORY NON-CREDIT	COURSES					
10	U21MYC04	Indian Constitution	MNC	1	0	0	0	0
			TOTAL	17	0	14	2	2

Head of the Department,

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

1

10 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Sec. 1

SEMESTER V

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	C
	100	THEORY COURS	ES					
1	U21ME501	Design of Machine Elements	PCC	3	0	0	0	3
2	U21PE	Professional Elective - I	PEC	3	0	0	0	3
3	U21PE	Professional Elective - II	PEC	3	0	0	0	3
4	U21XE	Open Elective – II	OEC	3	0	0	0	3
5	LIDANEEDO	the second se		2	0	0	2	0
	ТІ	HEORY COURSE WITH LABORA THEORY COURSE WITH PROJ						
3	U21ME502	Fundamentals of Automation	PCC	4	U	0	4	3
	U21ME502 U21ME503	Engineering Metrology and	PCC	2	0	2	0	3
6	U21ME503	Engineering Metrology and Measurements	PCC	2	0	2	0	-
6	U21ME503	Engineering Metrology and	PCC RSE WITH PROJE	2 CT 0	0 :0MI	2 PONI	0 ENT	3
6	U21ME503	Engineering Metrology and Measurements	PCC	2	0	2	0	-
6 L/	U21ME503	Engineering Metrology and Measurements COURSES / LABORATORY COU	PCC RSE WITH PROJE	2 CT 0	0 :0MI	2 PONI	0 ENT	3
6 L4 7	U21ME503 BORATORY U21ME504	Engineering Metrology and Measurements COURSES / LABORATORY COU Mechatronics Laboratory	PCC RSE WITH PROJE PCC HSMC	2 CT C	0 :OMI 0	2 PONI 4	0 ENT 0	3
6 L4 7	U21ME503 BORATORY U21ME504	Engineering Metrology and Measurements COURSES / LABORATORY COU Mechatronics Laboratory Soft Skills – II	PCC RSE WITH PROJE PCC HSMC	2 CT C	0 :OMI 0	2 PONI 4	0 ENT 0	3

SEMESTER VI

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	С
		THEORY COURSES						
1	U21ME601	Finite element Analysis	PCC	3	0	0	0	3
2	U21ME602	Design of Transmission System	PCC	3	0	0	0	3
3	U21PE	Professional Elective - III	PEC	3	0	0	0	3
4	U21PE	Professional Elective – IV	PEC	3	0	0	0	3
5	U21XE	Open Elective – III	OEC	3	0	0	0	3
6	U21ME603	THEORY COURSE WITH PROJECT	1	-		1.	1	-
-		Heat and Mass Transfer		3	0	2	0 ENT	4
L	BORATORY	COURSES / LABORATORY COURSE	WITH PROJE	стс	OMF		72	4
L# 7	U21ME604	COURSES / LABORATORY COURSE Simulation and Analysis Laboratory		1000	-	PONE	ENT	2
L	BORATORY	COURSES / LABORATORY COURSE	PCC	ст с 0	OMF 0	PONE 4	ENT 0	2
7 8	U21ME604 U21ME605	COURSES / LABORATORY COURSE Simulation and Analysis Laboratory Design and Fabrication Project	PCC EEC HSMC	СТ С 0 0	0 0	PONE 4 0	0 8	2
7 8	U21ME604 U21ME605	COURSES / LABORATORY COURSE Simulation and Analysis Laboratory Design and Fabrication Project Soft Skills – III	PCC EEC HSMC	СТ С 0 0	0 0	PONE 4 0	0 8	

22/01/24

5

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

((a. 1

SEMESTER VII

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	с
		THEORY COURSE	S					
1	U21ME701	Engineering Economics and Cost Analysis	HSMC	3	0	0	0	3
2	U21ME702	Industrial Engineering	PCC	3	0	0	0	3
3	U21PE	Professional Elective – V	PEC	3	0	0	0	3
4	U21PE	Professional Elective - VI	PEC	3	0	0	0	3
5	U21XE	Open Elective – IV	OEC	3	0	0	0	3
LA	BORATORY	COURSES / LABORATORY COURS	SE WITH PROJE	CT C	OM	ON	ENT	
6	U21ME703	Project work Phase - I	EEC	0.	0	0	4	2
	•	6	TOTAL	15	0	0	4	17

SEMESTER VIII

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Ρ	J	с
1	U21ME801	Project work Phase – II	EEC	0	0	0	20	10
		•	TOTAL	0	0	0	20	10

INDUSTRIAL TRAINING / INTERNSHIP

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	P	J	С
1	U21MEI01	Industrial Training / Internship *	EEC	0	0	0	0	2
		1	TOTAL	0	0	0	0	2

*Four Weeks during any semester vacation from III to VI Semester

NCC CREDIT COURSES

SI.NO.	COURSE	COURSE TITLE	CATEGORY	L	т	Ρ	J	с
1	U21NCC01	National Cadet Corps I	-	1	0	2	0	2
2 .	U21NCC02	National Cadet Corps II	-	1	0	2	0	2
3	U21NCC03	National Cadet Corps III	•	1	0	2	0	2
4	U21NCC04	National Cadet Corps IV	-	2	0	2	0	3
5	U21NCC05	National Cadet Corps V	-	1	0	2	0	2
6	U21NCC06	National Cadet Corps VI	-	2	0	2	0	3
				8	-	6	-	14

NCC Credit Course (Level 1 – Level 6) are offered for NCC students only. The grades earned by the students will be recorded in the mark sheet, however the same shall not be considered for the computation of CGPA.

TOTAL CREDITS: 165

Engineering Centre for Academic Courses Solourses

KPRIET

100

B.E. - ME - R2021 - CBCS

(B)

PROFESSIONAL ELECTIVES COURSES: VERTICALS

Vertical I ENGINEERING DESIGN	Vertical II MATERIALS AND MANUFACTURING	Vertical III INDUSTRIAL ENGINEERING	Vertical IV HEAT DYNAMICS	Vertical V ROBOTICS AND AUTOMATION	Vertical VI AUTOMOTIVE & ENERGY ENGINEERING
Design for Manufacture and Assembly	Failure Analysis and Non- Destructive Testing	Operations Research	Gas Dynamics and Jet Propulsion	Automation in Manufacturing	Automotive Engine and Subsystems
Computer Aided Design	Smart Materials and Structures	Process Planning and Cost Estimation	Heating, Ventilation and Air Conditioning	Robotics	Electric Vehicle Technology
Machine Tool Design	Composite Materials	Plant Layout and Materials Handling	Advanced Internal Combustion Engines	Measurements and Controls	Smart Mobility and Vehicle Systems
Vibration Analysis	Non-Traditional Machining Processes	Computer Integrated Manufacturing	Computational Fluid Dynamics	Industry 4.0	Bioenergy Conversion Technologies
Tribology and Industrial Annications	Welding Technology	Lean Supply Chain Management	Power Plant Engineering	Microprocessor and Artificial Intelligence for Industry	Energy Storage Devices
Product Product Life Cycle Management	Additive Manufacturing	Total Quality Management	Renewable Energy Resources and Systems	Embedded Systems and Programming	Energy Conservation in Industries
Design of Jigs, Fixtures and Press Tools	Biomaterials and Ceramics	Project Management	Turbomachines	Smart Manufacturing	Energy Management and Equipment Design

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VII. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VII.

Professor & Head, Department of Mechanical Engineering KPR Institute of Engineering and Technology Arasur, Colmbatore - 641 407

Dr. S. RAMESH BABU, M.E., Ph.D.

teeri

Centre for

chnol

PROFESSIONAL ELECTIVE COURSES

VERTICAL I ENGINEERING DESIGN

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	P	J	c
1	U21MEP01	Design for Manufacture and Assembly	PEC	3	0	0	0	3
2	U21MEP02	Computer Aided Design	PEC	3	0	0	0	3
3	U21MEP03	Machine Tool Design	PEC	3	0	0	0	3
4	U21MEP04	Vibration Analysis and Control	PEC	3	0	0	0	3
5	U21MEP05	Tribology and Industrial Applications	PEC	3	0	0	0	3
6	U21MEP06	Product Development and Life Cycle Management	PEC	3	0	0	0	3
7	U21MEP07	Design of Jigs, Fixtures and Press Tools	PEC	3	0	0	0	3

VERTICAL II MATERIALS AND MANUFACTURING

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	c
1	U21MEP08	Failure Analysis and Non– Destructive Testing	PEC	3	0	0	0	3
2	U21MEP09	Smart Materials and Structures	PEC	3	0	0	0	3
3	U21MEP10	Composite Materials	PEC	3	0	0	0	3
4	U21MEP11	Non – Traditional Machining Processes	PEC	3	0	0	0	з
5	U21MEP12	Welding Technology	PEC	3	0	0	0	3
6	U21MEP13	Additive Manufacturing	PEC	3	0	0	0	3
7	U21MEP14	Biomaterials and Ceramics	PEC	3	0	0	0	3

VERTICAL III INDUSTRIAL ENGINEERING

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	c
1	U21MEP15	Operations Research	PEC	3	0	0	0	3
2	U21MEP16	Process Planning and Cost Estimation	PEC	3	0	0	0	3
3	U21MEP17	Plant Layout and Materials Handling	PEC	3	0	0	0	3
4	U21MEP18	Computer Integrated Manufacturing	PEC	3	0	0	0	3
5	U21MEP19	Lean Supply Chain Management	PEC	3	0	0	.0	3

Dr. S. RAMESH BABU, M.E., Ph.D. Professor & Head, Department of Mechanical Engineering KPR Institute of Engineering and Technology/ Arasur, Coimbatore - 641 407 ŝ

ofEngineer

Instin

Centre for

Academic

			1% Course	s /	21	-		-
6	U21MEP20	Total Quality Management	* REC	3	10	0	0	3
0			PECDATO	1	-	0	0	2
7	U21MEP21	Project Management	T LO	3	0	0	0	3

VERTICAL IV HEAT DYNAMICS

					-			
SI.NO.	COURSE	COURSE TITLE	CATEGORY	L	т	Ρ	J	с
1	U21MEP22	Gas Dynamics and Jet Propulsion	PEC	3	0	0	0	3
2	U21MEP23	Heating, Ventilation and Air Conditioning	PEC	3	0	0	0	3
3	U21MEP24	Advanced Internal Combustion Engines	PEC	3	0	0	0	3
4	U21MEP25	Computational Fluid Dynamics	PEC	3	0	0	0	3
5	U21MEP26	Power Plant Engineering	PEC	3	0	0	0	3
6	U21MEP27	Renewable Energy Resources and Systems	PEC	3	0	0	0	3
7	U21MEP28	Turbomachines	PEC	3	0	0	0	3

VERTICAL V ROBOTICS AND AUTOMATION

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	J	С
1	U21MEP29	Automation in Manufacturing	PEC	3	0	0	0	3
2	U21MEP30	Robotics	PEC	3	0	0	0	3
3	U21MEP31	Measurements and Controls	PEC	3	0	0	0	10
4	U21MEP32	Industry 4.0	PEC	3	0	0	0	1
5	U21MEP33	Microprocessor and Artificial Intelligence for Industry	PEC	3	0	0	0	:
6	U21MEP34	Embedded Systems and Programming	PEC	3	0	0	0	
7	U21MEP35	Smart Manufacturing	PEC	3	0	0	0	1

VERTICAL VI AUTOMOTIVE & ENERGY ENGINEERING

SI.NO.	COURSE	COURSE TITLE	CATEGORY	L	т	Р	J	С
1	U21MEP36	Automotive Engine and Subsystems	PEC	3	0	0	0	3
2	U21MEP37	Electric Vehicle Technology	PEC	3	0	0	0	3
3	U21MEP38	Smart Mobility and Vehicle Systems	PEC	3	0	0	0	3
4	U21MEP39	Bioenergy Conversion Technologies	PEC	3	0	0	0	3

Dr. S. RAMESH BABU, M.E.,Ph.D. Professor & Head, Department of Mechanical Engineering KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407

S
KPRIET

10

		it sul	Academic	hnolo				
5	U21MEP40	Energy Storage Devices	PEC	*3	0	0	0	3
6	U21MEP41	Energy Conservation in Industries	PECaron	3	0	0	0	3
7	U21MEP42	Energy Management and Equipment Design	PEC	3	0	0	0	3

COMMON PROFESSIONAL ELECTIVES

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	P	J	c
1	U21MEP43	Comprehension - I	BSC	3	0	0	Ò	3
2	U21MEP44	Comprehension - II	BSC	3	0	0	0	3

ineerin

Centre for

Dr. S. RAMESH BABU, M.E., Ph.D. Preis & Head, Department of Mechanical Engineering KPR Institute of Engineering and Technology Arasur, Coimbatore - 641 407

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES - I (SEMESTER: IV)

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Ρ	J	с
1	U21MEX01	Industrial Robotics	OEC	3	0	0	0	3
2	U21MEX02	Intelligent Vehicle Systems	OEC	3	0	0	0	3

OPEN ELECTIVES - II (SEMESTER: V)

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	с
1	U21MEX03	Industrial Safety	OEC	3	0	0	0	.3
2	U21MEX04	Additive Manufacturing and 3D printing	OEC	3	0	0	0	3

OPEN ELECTIVES - III (SEMESTER: VI)

SI.NO.	COURSE CODE	COURSE TITLE	CATEGORY	L	т	Р	J	с
1	U21MEX05	Automotive Systems	OEC	3	0	0	0	3
2	U21MEX06	Low Cost Automation	OEC	3	0	0	0	3

OPEN ELECTIVES - IV (SEMESTER: VII)

SI.NO.	COURSE	COURSE TITLE	CATEGORY	L	т	Р	J	с
1	U21MEX07	Product Design and Development	OEC	3	0	0	0	3
2	U21MEX08	Industrial Automation	OEC	3	0	0	0	3

22/01/24

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

r

Scheme of Credit distribution - Summary

S.No	Stream				Cred	its/Sem	nester			Credits
0.110	otream	T	п	ш	IV	v	VI	VII	VIII	
1.	Humanities and Social Sciences including Management (HSMC)	2	2	_	1	1	1	3	-	10
2.	Basic Science Courses (BSC)	10	6	4	3		-	-	-	23
3.	Engineering Science Courses (ESC)	7	11	-			-	-	-	18
4.	Professional Core Courses (PCC)	-	3	20	17	11	12	3		66
5.	Professional Elective Courses (PEC)	-	-	-	-	6	6	6	-	18
6.	Open Elective Courses (OEC)	-	-	-	3	3	3	3	-	12
7.	Employability Enhancement Courses (EEC)	-	-	-	-	-	4	2	10	16
8.	Industrial Training/ Internship	-	-	-	-	-	-	-	2	2
9.	Mandatory Non-Credit Course (MNC)	-	-		-	-	-	-	-	-
	Total	19	22	24	24	21	26	17	12	165

101 24 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER I

		Category: BSC							
1104104 104	CALCULUS AND DIFFERENTIAL EQUATIONS (Common to AD, BM, CE, CH, CS, CS(AIML), EC, IT,	L	Т	P	J	c			
U21MA101	(Common to AD, DM, OL, ON, CC, CC, MAN, ME, MI)	3	1	0	0	4			

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the concepts of matrices and calculus which will enable them to model and analyze
 physical phenomena involving continuous change
- To understand the methodologies involved in solving problems related to fundamental principles of calculus
- To develop confidence to model mathematical pattern and give appropriate solutions

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the knowledge of matrices with the concepts of eigenvalues to study their problems in core areas (Apply)
- CO2: Apply the basic techniques and theorems of functions of several variables in other areas of mathematics (Apply)
- CO3: Analyze the triple integrals techniques over a region in two dimensional and three dimensional geometry (Apply)
- CO4: Apply basic concepts of integration to evaluate line, surface and volume integrals (Apply)
- CO5: Solve basic application problems described by second and higher order linear differential equations with constant coefficients (Understand)

POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	1	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	3	2	-	-	-	4	-	-	-	-	-	-	1	-

CO-PO MAPPING:

SYLLABUS:

UNIT I MATRICES

9+3

Eigenvalues and eigenvectors – Properties (without proof) – Cayley Hamilton theorem (without proof) – Diagonalization using orthogonal transformation – Applications

UNIT II FUNCTIONS OF SEVERAL VARIABLES

9+3

Partial derivatives – Total derivative – Jacobians – Taylor's series expansion – Extreme values of functions of two variables – Lagrange multipliers method

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9 + 3

UNIT III MULTIPLE INTEGRALS

Double integrals - Change of order of integration - Triple integrals - Applications in area and volume

UNIT IV LINE AND SURFACE INTEGRALS 9+3

Line integrals – Surface integrals – Green's theorem in a plane – Gauss divergence theorem – Stokes' theorem (excluding proofs)

UNIT V ORDINARY DIFFERENTIAL EQUATIONS

Second and higher order linear differential equations with constant coefficients – Variable coefficients – Euler Cauchy equation – Legendre's equation – Method of variation of parameters – Applications

Contact Periods:

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project	- Periods
					Total	60 Periods

TEXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley India Pvt Ltd, New Delhi, 2018.
- 2. Grewal B S, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, New Delhi, 2017.

REFERENCES:

- 1. Bali N P and Dr Manish Goyal, "A text book of Engineering Mathematics", 12th edition, Laxmi Publications, 2016.
- Thomas G B and Finney R L, "Calculus and Analytic Geometry", 14th edition, Pearson Education India, 2018.
- 3. Maurice D Weir, Joel Hass and Christopher Heil, "Thomas Calculus", 14th edition, Pearson Education, India, 2018.
- 4. James Stewart, "Calculus: Early Transcendental", 7th edition, Cengage Learning, New Delhi, 2015.

EVALUATION PATTERN:

	Contir	uous Internal As	sessments				
Assessment I (100 Marks)		Assessme (100 Mar					
Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ	Written Test	II Total Internal Vritten Assessments 60 200 40	End Semeste Examination		
40	60	40	60	200	100		
	То	otal		40	60		
				10	0		

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407

14

9+3

SEMESTER I

T	ENGLISH FOR TECHNOLOGISTS		Cate	gory	HSI	Л
U21EN101	Common to	L	Т	Р	J	С
UZIENIUI	AD, BM, CH, CE, CS, CS(AIML), EE, EC, ME, MI, IT	1	0	2	0	2

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- To infer and interpret the meaning of Technical, Business, Social and Academic contexts.
- To enhance the listening skills and facilitate effective pronunciation.
- To make effective presentation and conversation in technical and professional environment.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Comprehend language and learn strategies for error-free communication (Understand)

CO2: Improve speaking skills in academic and social contexts (Apply)

CO3: Enhance both reading and writing skills to excel in professional career (Analyse)

CO4: Evaluate different perspectives on a topic (Analyse)

CO5: Develop listening skills to understand complex business communication in a variety of global English accents through Personality Development (Understand)

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	(-	-	-	-	1.	-	3	-	1	± ¹⁰⁰	i.
CO2		-	-	-	-	-	-	-	2	3	-	-	-	-
CO3	4	-	-	-	-	-	-	-	2	3	-	1	-	
CO4	-	-	-	-	-	-	-	-	2	3	-	-	-	-
CO5	-	-	-	-	-	-	-	2	-	3	-	1	-	-

CO-PO MAPPING:

SYLLABUS:

UNIT I SUBJECTIVE INTROSPECTION

Module:1 Vocabulary Building

Activity: Word Puzzles, Snappy words, Word Sleuthing

Module:2 Introducing and Sharing Information

Activity: Get to know oneself, Introducing Peer Members

Module:3 Opinion Paragraph

Activity: Note making, analyzing and writing a review

UNIT II CAREER ENHANCEMENT

Module:4 Reading Comprehension

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

9

9

9

Activity: Reading Newspaper articles/Blogs, Sentence completion Module:5 E-mail Communication

Activity: Drafting personal and professional emails

Module:6 Career Profiling

Activity: Resume Writing & Digital Profiling

UNIT III LANGUAGE ADEPTNESS

Module:7 Rewriting passages

Activity: Conversion of voices & Rephrasing Articles

Module:8 Enhancing Pronunciation skills

Activity: Listening to short technical Reels and reproducing it

Module:9 Making Conversations

Activity: Role play & Narrating Incidents

UNIT IV TECHNICAL WRITING

Module:10 Spotting Errors

Activity: Proof reading, Rewriting sentences

Module:11 Data interpretation

Activity: Interpretation of Graphics/Charts/Graphs

Module:12 Expository Writing Activity: Picture inference, Captions for Posters& Products

UNIT V LANGUAGE UPSKILLING

Module:13 Listening for Specific Information

Activity: TED talks/Announcement/Documentaries

Module:14 Presentation

Activity: Extempore & Persuasive Speech

Module:15 Team Communication

Activity: Team building activities, Group Discussion

LIST OF EXERCISES

- 1. Introducing oneself
- 2. Role play
- 3. Listening to short technical Reels
- 4. Listening to TED Talks/ Announcements/ Documentaries
- 5. Presentation
- 6. Group Discussion

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical: 30 Periods	Project	- Periods
				Total	60 Periods

TEXT BOOKS:

- 1. Ashraf Rizvi, "Effective Technical Communication", 2nd edition, Mc Graw Hill. India 2017.
- Rod Ellis, "English for Engineers & Technologists", Vol. II: (English for Engineers and Technologist: A Skills Approach). 2nd edition, Orient Black Swan, 1990.

8.

REFERENCES:

3

0.5

- 1. Raymond Murphy, "Intermediate English Grammar", 2nd edition, Cambridge University Press, 2009.
- 2. Thomas L Means, "English and Communication for Colleges", 4th edition, Cengage 2017.
- 3. Using English: "A Coursebook for Undergraduate Engineers and Technologists", 1st edition, Orient Black Swan, 2017.

EVALUATION PATTERN:

Contir	uous Inter	nal Assessments		End Semester Examinations
Assessm (Theor (100 Mar	y)	Assessment (Practical) (100 Marks)		
Individual Assignment / Seminar / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)		Practical Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25	
25		25		50
		50	ne in	50
		Tota	al: 100	

22/01/24

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

B

B.E. – ME – R20	21 – CBCS	tute	Engine	re fo	r	C K	PRIE) T
	SEMESTER I	A Institute	Cent Acad Col	lemi Jrses		Inolog	am Beyara	đ
U21CSG01	PROBLEM SOLVING AND C PROGRAMMING Common to All Branches	101	And a state of the	Categ		ES J	c c	
			2	0	2	0	3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide exposure to problem-solving through programming
- To develop computational thinking perspective of one's own discipline
- To write, compile and debug programs using C language

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Formulate the algorithmic solutions for a given computational problem (Understand)

CO2: Describe modularization, structures and pointers in C language (Understand)

CO3: Design and implement algorithms for a given problem using C control structures (Apply)

CO4: Apply the C programming constructs for searching and sorting techniques (Apply)

CO5: Solve real time problems using suitable non-primitive data structures in C (Apply)

POs Cos	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	1	1	2	-	-	-	1	2	2	-	3	-	-
CO2	2	1	1	2	-	-	-	1	2	2	-	2	-	-
CO3	3	2	2	2	-	2	141	1	2	2	-	2	1=1	-
CO4	3	2	2	2	-	-	-	1	2	2	-	2	-	-
CO5	3	2	2	2	-	-	-	1	2	2	-	2	-	-

CO-PO MAPPING:

SYLLABUS:

UNITI COMPUTATIONAL THINKING

Computational Thinking - Modern Computer - Information based Problem solving - Real world information and Computable Data - Data types and data encoding - Number Systems - Introduction to programming languages - Basics of C programming - variables- Data types - keywords - C program structure - Simple programs in C

UNIT II ALGORITHMIC APPROACH

Logic - Boolean Logic - Applications of Propositional logic - Problem Definition - Logical Reasoning and Algorithmic thinking - Pseudo code and Flow chart - Constituents of algorithms - Sequence, Selection and Repetition - Problem understanding and analysis - Control structures in C - Algorithm design and implementation using control structures

UNIT III SEARCHING, SORTING, AND MODULARIZATION

Data Organization - Arrays - Introduction to Searching and Sorting - Linear Search, Binary Search - Basic sorting techniques - Two-dimensional arrays - Matrix manipulation - Modularization -

> Head of the Departmen Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407

6

2

6

6

Functions – Function prototype – Function definition – Function call – Built-in functions (string functions and math functions) – Recursion

UNIT IV STRUCTURES AND POINTERS

Pointers – Pointer operators – Pointer arithmetic – Arrays and pointers – Array of pointers – Example Program – Sorting of names – Parameter passing – Pass by value – Pass by reference – Structure – Nested structures – Pointer and Structures – Array of structures – Example Program using structures and pointers – Unions

UNIT V FILES

Files – Types of file processing – Sequential access – Random access – Sequential access file – Example Program – Finding average of numbers stored in sequential access file – Random access file – Example Program – Transaction processing using random access files – Command line arguments

LIST OF EXPERIMENTS

A. Lab Programs

- 1. Using IO Statements, get higher secondary marks of a student. Calculate and display the medical and engineering cut-off marks. [Assume the calculation formula]
- Develop a C program to emulate the operations of an ATM using control structures. Authentication, Deposit, Withdrawal, and Balance check and pin change operations are to be supported.
- Develop a calculator to perform the operations including addition, subtraction, multiplication, division and square of a number.
- Given different prices of a vegetable which is varying through the day (from morning to evening), find out the best buy price and sell price for the maximum profit. Eg. For the prices [33, 35, 28, 36, 39, 25, 22, 31], best buy is at 28 and best sell is at 39.
- 5. Collect height and weight of 4 of your friends and calculate their body mass index. Use 2dimensional array to store the values.
- Weights of 10 students of your class who are standing in a line is given in a random order. Find out if there is a heavy person whose weight is the sum of previous two persons.
- 7. Convert the given decimal number into binary, octal and hexadecimal numbers using user defined functions.
- 8. From a given paragraph perform the following using built-in functions:
 - a) Find the total number of words.
 - b) Capitalize the first word of each sentence.
- 9. Solve Towers of Hanoi using recursion.
- 10. Develop an expense manager which reads date, product, price and product category. The program should display the total expense amount based on product category or date as per user's selection. Use structures.
- 11. Develop a banking application to store details of accounts in a file. Count the number of account holders based on a search condition such as whose balance is less than the minimum balance.
- B. Mini Project (SAMPLE)

2.3

Create a Railway Reservation system with the following modules of Booking,

Availability checking

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 6

- Cancellation .
- Prepare chart

Contact Periods:

Lecture: 30 Periods Tutorial: - Periods

Practical: 30 Periods

Total 60 Periods

- Periods

Project

TEXT BOOKS:

- 1. David D. Railey and Kenny A.Hunt , "Computational Thinking for Modern problem Solver", 1st edition, CRC Press, 2014
- 2. Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", 2nd edition, Pearson, 2015

REFERENCES:

- 1. Paolo Ferragina and Fabrizio Luccio, "Computational Thinking First Algorithms", Then Code", 1st edition, Springer International Publishing, 2018
- Reema Thareja, "Programming in C", 2nd edition, Oxford University Press, 2016 2.
- Paul Deitel and Harvey Deitel, "C How to Program", 7th edition, Pearson Publication
 Juneja, B. L and Anita Seth, "Programming in C",1st edition, Cengage Learning India Pvt. Ltd., 2011
- 5. Pradip Dey, Manas Ghosh, "Fundamentals of Computing and Programming in C", 1st edition, Oxford University Press, 2009

Contir	uous Inter	nal Assessments		End Semeste	er Examinations			
Assessm (Theory (100 Mar	y)	Assessment (Practical) (100 Marks)		Theory	Practical			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments) 75 25		Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)			
40	60							
25		25		25	25			
	5	0	50					
		Tota	al: 100					

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

SEN	NEST	ERI
-----	------	-----

		*	Categ	jory:	BSC	:
U21PH101	ENGINEERING PHYSICS	L	Т	P	J	С
021FITIOT	(Common to all branches)	2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the fundamental principles of laser and fibre optics with their applications
- To acquire the knowledge of ultrasonic waves, thermal conductivity and properties of liquids
- To understand the concepts of crystals

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate the types of laser for various industrial and medical applications (Understand)

- CO2: Apply the concepts of fibre optics in engineering (Understand)
- CO3: Understand the production methods of ultrasonic waves and uses in engineering and medicine (Understand)

CO4: Apply the concepts of thermal conductivity in hybrid vehicles and viscosity of liquids in engineering applications (Understand)

CO5: Explain the basic concepts of crystals and its growth techniques (Understand)

P09 P010 P011 P012 PS01 PSO₂ POs PO8 **P07** PO3 P06 P01 PO2 PO4 PO5 COs --2 -2 1 -CO1 3 ---2 ----... 2 1 -CO2 3 ----2 ------2 1 -CO3 3 -2 --. -1 _ . CO4 3 2 -... --2 . -3 2 1 ... -CO5

SYLLABUS:

UNIT I LASER

CO-PO MAPPING:

6

6

Laser characteristics – Spontaneous and stimulated emission – Pumping methods – CO₂ laser – Semiconductor laser – Material Processing – Selective laser Sintering – Hologram – Medical applications (Opthalmology)

UNIT II FIBER OPTICS

Total internal reflection – Numerical aperture and acceptance angle – Classification of optical fibers (Materials, modes and refractive index profile) – Fiber optical communication system – Displacement and temperature sensor – Medical Endoscopy

Head of the Department, Mechanical Engineering,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

2

UNIT III ULTRASONICS

Properties of ultrasonic waves – Piezoelecrtic generator – Acoustic grating – Applications of ultrasonics in industry– SONAR – NDT – Ultrasonic scanning methods – Fetal heart movement

UNIT IV THERMAL PHYSICS AND PROPERTIES OF FLUIDS

Modes of heat transfer – Thermal conductivity – Lee's disc method – Solar thermal power generation – Hybrid vehicles – Microwave oven – Surface tension and coefficient of viscosity – Poiseuille's flow experiment

UNIT V CRYSTAL PHYSICS

Unit cell – Bravais lattices – SC, BCC, FCC structures – Miller indices – d spacing in cubic lattice – Crystal growth from melt: Bridgeman Technique – Silicon ingots from Czochralski method – Silicon wafers from ingots and its applications.

LIST OF EXPERIMENTS

1. Determination of the wavelength of a given laser source

2. Determination of acceptance angle and numerical aperture of an optical fibre

3. Determination of velocity of sound and compressibility of a liquid using Ultrasonic interferometer

Determination of thermal conductivity of a bad conductor using Lee's disc method

5. Determination of viscosity of the given liquid using Poiseuille's flow method

Contact Periods:

Lecture: 30 Periods	Tutorial: - Periods	Practical: 30 Periods	Project: - Periods

TEXT BOOKS:

- Bhattacharya D K and Poonam Tandon, "Engineering Physics", 2nd edition, Oxford University Press, Chennai, 2017
- 2. Marikani A, "Engineering Physics", 3rd edition, PHI publishers, Chennai, 2021

REFERENCES:

- 1. Shatendra Sharma and Jyotsna Sharma, "Engineering Physics", 2nd edition, Pearson India Education Services Private Limited, Chennai, 2018
- Avadhanulu M N, Kshirsagar P G and Arun Murthy TVS, "A Text book of Engineering Physics", 2nd edition, S Chand Publishing, New delhi, 2018
- Thyagaran K, Ajoy Ghatak, "Lasers Fundamentals and Applications", 2nd edition, Laxmi Publications Pvt Limited, New delhi, 2019
- 4. https://nptel.ac.in/downloads/104104085/
- 5. https://nptel.ac.in/courses/122107035/8/

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

22

6

6

Total: 60 Periods

13

3

zð

1) 11 T

EVALUATION PATTERN:

Contin	uous Interi	nal Assessments	2240	End Semester Examinations			
Assessme (Theory (100 Mar	ent I	Assessment (Practical) (100 Marks)		Theory Examinations	Practical Examinations		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)		(Examinations will be conducted for 100 Marks)	(Examinations will be conducted for 100 Marks)		
40	60	75	25				
25		25		25	25		
20	E	60		50			
			al: 100				

22101/24

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Aresur, Coimbatore - 641407.

SEMESTER I

	ENGINEERING CHEMISTRY	C	ateg	ory:	BSC	;
U21CY101	(Common to all BE./B.Tech. courses)	L	т	Р	J	C
		2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To inculcate the fundamentals of water technology and electrochemistry
- To gain basic knowledge of corrosion of metals and alloys
- To acquire knowledge about the properties of fuels and applications of polymers

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the principles of water technology in treatment of industrial and domestic water and estimate the various constituents of industrial water (Apply)
- CO2: Describe the principles and applications of electrochemical cells, fuel cells and solar cells (Understand)
- CO3: Outline the different types of corrosion processes and preventive methods adopted in industries (Understand)

CO4: Explain the analysis and calorific value of different types of fuels (Understand)

CO5: Classify the polymers and their engineering applications (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	1	-	-	-	-	2	-	1	-	-	1	2	-
CO2	3	1	-	-	-	· -	2	-	1	-	-	1	2	-
CO3	3	1	-	-	-	-	2	÷	1	-	-	1	2	
CO4	3	1	-	-	-	-	2	-	1	-	-	1	2	
CO5	3	1	-	-	-	2	2	-	1	-	-	1	2	-

SYLLABUS:

UNIT I CHARACTERISTICS OF WATER AND ITS TREATMENT

Characteristics of water – Hardness – Types, Dissolved oxygen, Total dissolved solids, Disadvantages due to hard water in industries – (Scale, Sludge, Priming, Foaming and Caustic embrittlement), Water softening methods – Lime-soda, Zeolite, Ion exchange processes and reverse Osmosisand their applications. Specifications of domestic water (ICMR and WHO).

Water treatment for municipal supply –Sedimentation with coagulant – Sand Filtration – Chlorination, Disinfection methods– UV treatment, Ozonolysis, Electro dialysis

UNIT II ELECTROCHEMISTRY AND ENERGY STORAGE SYSTEMS

Introduction, Electrodes – (Calomel electrode), Electrochemical series and its applications, Brief introduction to conventional primary and secondary batteries – (Pb acid, Lithium)

Head of the Department. Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

6

Fuel cells - Polymer membrane fuel cells, Solid-oxide fuel cells - Working principles, advantages, applications. Solar cells - Dye sensitized solar cells -Working principles, characteristics and applications 6

CORROSION AND ITS CONTROL UNIT III

Types - Dry - Chemical corrosion and Wet - Galvanic and differential aeration (Pitting, Crevice, pipeline) - Factors influencing rate of corrosion - Corrosion control methods - Sacrificial anode and impressed current method - Protective coating - Electroplating - Ni plating.

Alloys - Ferrous (stainless steel), Heat treatment - Non-ferrous alloys (Brass -Dutch metal, German Silver) - Composition, properties and uses

FUELS AND COMBUSTION UNIT IV

Fuels- Solid fuel: Coal - Analysis of coal (Proximate analysis only) - Liquid fuel - Manufacture of synthetic petrol (Bergius process) - Octane number, cetane number, Knocking in engines- Antiknocking agents, Gasoline additives, Gaseous fuel: Compressed natural gas (CNG) - Liquefied petroleum gases (LPG) - Composition only. Calorific value - Higher and lower calorific values -Flue gas analysis (ORSAT method). Measurement of calorific value using bomb calorimeter, Threeway catalytic converter - Selective catalytic reduction of NOx

POLYMERS UNIT V

Introduction - Monomer, dimers, functionality, degree of polymerisation, transition glass temperature Classification of polymers, Difference between thermoplastics and thermosetting plastics, Engineering application of plastics - ABS, PVC, PTFE and Bakelite. Types of compounding of plastics - Moulding, Injection moulding, Extrusion moulding, Compression moulding Conducting polymers -Polypyrrole, Polyacetylene, Polyaniline - Structure and applications, Composites - FRP - Properties and applications

LIST OF EXPERIMENTS

- 1. Determination of total, permanent and temporary hardness of a given sample water by EDTA method
- 2. Estimation of ferrous ion by potentiometric titration
- 3. Estimation of Copper in Brass by EDTA method
- 4. Determination of percentage of moisture, volatile, ash and carbon content in a given sample of coal.
- 5. Determination of molecular weight and degree of polymerization of an oil sample by viscosity measurement (Ostwald's viscometer).
- Determination of chloride content in the water sample 6.
- 7. Determination of strength of HCI by pH metric method

Contact periods:

Lesturo	30 Periods	Tutorial:	- Periods	Practical:	15 Periods	Project	 Periods
Lecture.	30 Ferious	r dionai.	1 onede			Total	45 Periods

TEXT BOOKS:

- 1. Jain P C and Monika Jain, "Engineering Chemistry", 16th edition, Dhanpat Rai Publishing Company, Pvt. Ltd., New Delhi, 2015
- Vairam S, Kalyani P and Suba Ramesh, "Engineering Chemistry", 2nd edition, Wiley India Pvt. Ltd, 2. New Delhi, 2014

REFERENCES:

- 1. Friedrich Emich, "Engineering Chemistry", 2nd edition, Scientific International Pvt. Ltd, New Delhi, 2014
- Prasanta Rath, "Engineering Chemistry", 1st edition, Cengage Learning India, Pvt. Ltd, Delhi, 2015 2
- Shikha Agarwal, "Engineering Chemistry, Fundamentals and Applications", 1st edition, Cambridge 3. University Press, 2015
- 4. https://nptel.ac.in/courses/113/104/113104008/

Mechanical Engineering, KPR Institute of Engineering and Technology, 6

EVALUATION PATTERN:

Contir	uous Inter	nal Assessments		End Semester	Examinations
Assessment I (Theory) (100 Marks)		Assessment (Practical) (100 Marks		Theory	Practical
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25		
25		25		25	25
	50	D	50		
		Tota	l: 100		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

01/24 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

26

SEMESTER I

		Coil	ateg	ory:	FUL	·
	ENGINEERING GRAPHICS	L	T	Р	J	С
U21MEG01	(Common to all courses)	0	0	4	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To expose the standards and conventions followed in preparation of engineering drawings
- To develop graphic skills for communication of concepts, ideas and engineering drawings
- To expose on 2D & 3D drawings and its projections

COURSE OUTCOME:

Upon completion of the course, the student will be able to

CO1: Sketch the curves and orthographic projections of points as per BIS conventions (Apply)

CO2: Illustrate the orthographic projections of straight lines and plane surfaces (Apply)

CO3: Sketch the orthographic projections of solids, lateral surfaces of frustums, truncated solids and

its development (Apply)

CO4: Develop the lateral surfaces of simple solids (Apply)

CO5: Interpret the orthographic and isometric views of simple components (Apply)

POs	P01	PO2	PO3	P04	PO5	PO6	P07	PO8	PO9	P010	PO11	P012	PSO1	PSO2
CO1	3	2	2	-	3	-	-	1	-	2	-	1	3	-
CO2	3	2	2	-	3	-	-	-	-	2	-	1	3	-
CO3	3	2	2	-	3	-	-	-	-	3	-	1	3	1.
CO4	3	2	2	-	3	-	-	-	-	3	-	1	3	-
CO5	3	2	2	-	3	-	-	-		3	-	1	3	-

CO PO Mapping:

SYLLABUS:

+3

BASICS OF ENGINEERING DRAWING AND CAD (Not for examination)

Introduction – Drawing instruments and its uses – Sheet layout – BIS conventions – Lines – Lettering and dimensioning practices – Lines – Co – Ordinate points – Axes – Poly lines – Square – Rectangle – Polygons – Splines – Circles – Ellipse – Text – Move – Copy – Off – Set – Mirror – Rotate – Trim – Extend – Break – Chamfer – Fillet – Curves – Constraints viz. agency – Parallelism – Inclination and perpendicularity

UNIT I CONICS, SPECIAL CURVES AND PROJECTION OF POINTS

12

Construction of parabola – Ellipse and hyperbola using eccentricity method – Construction of involutes for squares and circles – Construction of Tangent and normal to the above curves – Introduction – Method of projection – Planes of projection – Reference line and notations – Orthographic Projection of points – Points in all four quadrants

lead of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur. Coimbatore - 641407.

01/24

UNIT II PROJECTION OF STRAIGHT LINES AND SURFACES

Projection of straight lines - Lines inclined to HP / VP plane - Inclined to both HP and VP planes (straight lines are assumed to be in first quadrant only) - Projection of planes - Projection of square - Rectangle - Pentagon - Hexagon and circular plane - Inclined to both the plane by change of position method

UNIT III PROJECTION OF SOLIDS

Introduction - Projection of solids - Prisms - Pyramids - Cylinders and cones with axis inclined to both the planes (Solids resting on HP only)

UNIT IV DEVELOPMENT OF LATERAL SURFACES OF SOLIDS

Introduction - Cutting plane - Sectional views of right regular solids resting with base on HP - Prisms - Pyramids - Cylinder and cone - True shapes of the sections - Development of lateral surfaces of right regular prisms - pyramids - Cylinders - Cones resting with base on HP only - Development of the frustums and truncations

UNIT V ORTHOGRAPHIC AND ISOMETRIC PROJECTIONS

Orthographic projection - Simple machine components using free hand sketching - Isometric projection - Simple Solid exercises and combination of solids

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 60 Periods	Project - Periods
			Total: 60 Periods

TEXT BOOKS:

- 1. ND Bhat & VM Panchal, "Engineering Drawing", 51st edition, Charotar Publishing House, Gujarat, 2013.
- 2. Venugopal K. and Prabhu Raja V, "Engineering Graphics", 6th edition, New Age International (P) Limited.2019.

REFERENCE BOOKS:

- 1. Natrajan K.V., A text book of Engineering Graphics, 21st edition, Dhanalakshmi Publishers, Chennai.2017.
- 2. Sam Tickoo, AutoCAD 2013 for Engineers and Designers, 1st edition, Dream tech Press, 2013.
- 3. M.H.Annaiah & Rajashekar Patil, Computer Aided Engineering Drawing, 4th edition, New Age International Publishers, 2012.
- 4. Basant Aggarwal, Engineering Drawing, 1st edition, Tata Mc Graw Hill Education Private Limited,2010.
- 5. D.M.Kulkarni, A.P.Rastogi, A.K.Sarkar, "Engineering Graphics with AutoCAD", PHI Learning Private Limited, New Delhi, Revised edition. 2010.

EVALUATION PATTERN:

Continuous Internal Assessm	nents	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60	40	
	100	

12

12

12

12

	ensinee.
	Centre for
	Academic KPRIET
	Courses Contract
	* Coimbotole *
	Category: PCC
PES	

SE	ME	ST	ER
----	----	----	----

			Categ	jory:	PCC	;
	MANUFACTURING PRACTICES	L	Т	Р	J	С
U21MEG02	(Common to CE, CH, ME)	0	0	3	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide exposure on workshop tools and additive manufacturing processes
- To provide hands on training experiences in sheet metal, carpentry welding and plumbing operations
- To provide hands on experience on soldering and simple electrical circuit wiring

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify the various tools and measuring equipment used for assembly and dismantling practice

(Apply)

CO2: Develop simple components using 3D printer (Apply)

CO3: Fabricate products using sheet metal and carpentry (Apply)

CO4: Perform operations such as welding and plumbing (Apply)

CO5: Connect and test the electrical and electronics components for the given circuit diagram (Apply) CO PO Mapping:

POs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PS02
CO1	3	1	1	-	1	-	1	-	1	1	-	1	3	
CO2	3	1	1	-	3	-	1	-	2	1	-	2	3	-
CO3	3	1	1	-	1	-	1	-	3	2	-	1	3	-
CO4	3	1	1	-	1	-	1	-	3	2	-	1	3	-
CO5	3	1	1	-	1	-	1	-	3	2	-	1	3	-

UNIT I PRODUCT WORKSHOP

Disassemble the product of sub assembly – Measure various dimensions using measuring instruments. Free hand rough sketch of the assembly and components – Name of the components and indicate the various materials used – Study the functioning of the assembly and parts – Study the assembly and components design for compactness – Processing – Ease of assembly and disassembly – Assemble the product or subassembly

UNIT II ADDITIVE MANUFACTURING WORKSHOP

Study of 3 axis 3D printing machine – Methods of 3D printing – SLA and FDM methods – Pre – processing – Geometry creation – Support generation and slicing – Post Processing – Requirement and Techniques Support Removal – Sanding – Acetone treatment – Polishing

9

9

UNIT III SHEET METAL AND CARPENTRY WORKSHOP

Study of tools and equipment – Draw development drawing of simple objects on sheet metal (cone – Cylinder – Pyramid – Prism – Tray etc.) – Fabrication of components using small shearing and bending machines – Riveting practice – Study of carpentry process – Fabrication of wood joints like Lap – Tee – Dovetail and mortise & tenon joint

UNIT IV WELDING AND PLUMBING WORKSHOP

Study of tools and equipment – Study of various welding – Arc welding practice – Fitting – Square butt joint and lap joint – Plumbing tools – Make a piping joint to a simple piping layout (should include cutting – Threading and pipe fixing)

UNIT V ELECTRICAL AND ELECTRONICS ENGINEERING WORKSHOP

Study of tools and equipment – Study of basic electrical components and symbols – Simple Wiring – Staircase Wiring – fluorescent wiring – Study of soldering tools and methods of soldering

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 45 Periods	Project - Periods
			Total: 45 Periods

LIST OF EXPERIMENTS

- 1. Study on measuring instruments used in workshop practices.
- 2. Dismantling, measuring and reassembling of centrifugal pump.
- 3. 3D prototyping of simple components using FDM method.
- 4. 3D Printing of simple geometric shapes using SLA printer.
- 5. Fabrication of sheet metal tray and funnel.
- 6. Fabrication of wood joints.
- 7. Preparation of MS plate for Lap, butt and Tee joints using arc welding
- 8. Installation of water lines for washbasin and showers faucets.
- 9. Preparation of wiring for tube light, staircase and electric fan.
- 10. Soldering of a simple circuit consists of THC and SMD components.

TEXT BOOKS:

- 1. Hajra Choudhury, "Elements of Mechanical Engineering", 11th edition, Media Promoters, 2010.
- S.K. Hajra Choudhury, A.K. Hajra Choudhury, Nirjhar Roy the Elements of Workshop Technology – Vol I & II, 11th edition, Media Promoters and Publishers, Mumbai,2001

REFERENCES:

1. Workshop manual prepared by Department of Mechanical Engineering

9

2

1.0

EVALUATION PATTERN:

Continuous Internal Assessme	nts	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100	-	100
60		40

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

B.E. – ME – F	· 5	Ac	ade	e for Mic	K	PRIET
	SEMESTER II		ours	es	01002	iam Deyand
		1	Cate	gory	BS	2
U21MA201	LAPLACE TRANSFORMS AND COMPLEX VARIABLES (Common to CE, EE, CH, ME, MI)		т	Ρ	J	с
	· · · · · · · · · · · · · · · · · · ·	3	1	0	0	4

Engineer

÷

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the mathematical aspects of conversion time domain to frequency domain using Laplace transform and Inverse Laplace transform vice versa
- To use the concepts of complex analysis, in the study of heat flow, fluid dynamics and electrostatics
- To understand the concepts of singularities in the various domains of engineering fields

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply the concepts of Laplace transform in core engineering applications (Apply)

CO2: Apply the concepts of Inverse Laplace transform with their properties in engineering field (Apply)

CO3: analyze the complex functions and their mapping in certain complex planes (Understand)

- CO4: Evaluate complex contour integrals directly and use the Cauchy integral theorem in its various versions (Understand)
- CO5: Compute the residues of a function at given points or singularities and use the residue theorem to evaluate a contour integral (Understand)

CO-PO MAPPING:

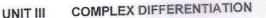
POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	1	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	2	-	1			-	-	-	-	-	-	1	19 7 1
CO4	2	2	-	-	-	-	-	-	78	-	-	-	1	-
CO5	3	3	-	-	-	-	-	-	-	-	-	-	1	-

SYLLABUS:

UNITI LAPLACE TRANSFORM

9 + 3

Laplace transform - Conditions for existence - Transform of elementary functions - Standard properties (statement only) - Transforms of unit step function - Impulse function - Periodic function - Initial and final value theorems - Convolution theorem (without proof)


UNIT II **INVERSE LAPLACE TRANSFORM**

9 + 3

Inverse Laplace transform - Standard properties (statement only) - Second order linear differential equations with constant coefficients

.

Analytic functions: Cauchy-Riemann equations (Cartesian form) and sufficient conditions (excluding proofs) - Harmonic and orthogonal properties of analytic function - Construction of analytic functions Bilinear transformations

COMPLEX INTEGRATION UNIT IV

Complex integration - Statement and applications of Cauchy's integral theorem and Cauchy's integral formula

SINGULARITIES AND RESIDUES UNIT V

Taylor's and Laurent's series expansions - Singular points - Classification of singularities - Residues - Cauchy's residue theorem

Contact Periods:

Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project	- Periods
					Total	60 Periods

TEXT BOOKS:

- Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley India Pvt Ltd, New Delhi, 1. 2018.
- Grewal B S, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, New Delhi, 2017. 2.

REFERENCES:

- 1. Bali N P and Dr Manish Goyal, "A text book of Engineering Mathematics", 12th edition, Laxmi Publications, 2016.
- Thomas G B and Finney R L, "Calculus and Analytic Geometry", 14th edition, Pearson Education 2. India, 2018.
- James Stewart, "Calculus: Early Transcendental", 7th edition, Cengage Learning, New Delhi, 2015. 3.

EVALUATION PATTERN:

	Contin	uous Internal As	_				
Assessme (100 Mark		Assessme (100 Marl			End Semester		
Individual Assignment / Seminar / MCQ	Written Test	Individual		Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	Тс	otal		40	60		
			12012-0-12	10	0		

of the Department, Head Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9 + 3

9 + 3

9 + 3

SEMESTER II

			Cat	egory	ESC	2
U21EEG02	BASICS OF ELECTRICAL ENGINEERING (For ME)	L	T	Ρ	J	С
		3	0	0	0	3

PRE-REQUISITES

Nil

COURSE OBJECTIVES

- To acquire the knowledge on basics of electrical circuits and machines
- To understand the working principle and applications of fractional HP machines

To select the drive motor based on thermal overloading and load variation factors .

COURSE OUTCOMES (CO)

Upon completion of the course, the student will be able to

CO1: Solve an electric network by Apply basic laws (Apply)

- CO2: Explain the operating principles, characteristics and speed control methods of DC motors (Understand)
- CO3: Summarize the operation of three phase induction motor and synchronous motor (Understand)

CO4: Interpret the working principle and applications of fractional HP machines (Understand)

CO5: Select the drive motor based on thermal overloading and load variation factors (Understand)

COURSE ARTICULATION MATRIX:

POs COs	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	3	2	1	-	-	1	-	-	-	-	1	-	-
CO2	3	1	1	-	-	-	1	-	-	-	-	1	-	-
CO3	3	1	1	-	-	-	1	-		-	-	1	-	-
CO4	3	1	1	-	-*		1	-	4.1	-	-	1	-	-
CO5	3	2	2	1	-	-	1	1	-	-	-	1	-	-

SYLLABUS

UNIT I BASIC CONCEPTS OF ELECTRIC CIRCUITS

Active elements - DC and AC sources - Passive elements - Elements in series and parallel connections - Star and delta conversion - Ohm's law and Kirchhoff's laws - Mesh and Nodal analysis - Power, Power factor and Energy

UNIT II DC MOTORS

DC motors - Construction, principle of operation, types, torque equation, characteristics and applications - Starters for DC motors - Speed control and braking (Qualitative Analysis only)

UNIT III AC MOTORS

Three phase induction motors - Construction, principle of operation, characteristics and applications - Starters for AC motors - Synchronous motors - Construction and operating principle (Qualitative Analysis only)

124. Head of the Department, Mechanical Engineering, KPR institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

9

UNIT IV FRACTIONAL HP MACHINES

Construction, principle of operation, characteristics and applications: Single phase induction motor – Reluctance motor – Servomotor – Stepper motor (Qualitative Analysis only)

UNIT V SELECTION OF MOTOR FOR ELECTRIC DRIVES

Basic Elements – Types of electric drives – Factors influencing the choice of electrical drives – Heating and cooling curves – Loading conditions and classes of duty – Selection of power rating for drive motors with regard to thermal overloading and load variation factors

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods Total 45 Periods

TEXT BOOKS

- Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", 5th edition, McGraw Hill Education, New Delhi, Jul 2017.
- R.K. Rajput, "Electrical Machines", 6th edition, Laxmi Publications, Jan 2016.

REFERENCES

- William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", 8th edition, McGraw–Hill Education, New Delhi, Aug 2013
- S.K. Bhattacharya, "Electrical Machines", 4th edition, McGraw-Hill Education, New Delhi, July 2017.
- B.L. Theraja, A.K. Theraja, "A text book of Electrical Technology", 24th edition, S. Chand Publications, Jul 2014.

	Contin	uous Internal As	sessments			
Assessme (100 Mark		Assessme (100 Mar		Total Internal Assessments	End Semester Examinations	
Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Individual Assignment / Seminar / Mini Project / MCQ	Written Test			
40	60	40	60	200	100	
	Тс	otal	40	60		
			10.05	10	0	

EVALUATION PATTERN:

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER II

U21ME201			Cat	egory	: PC	C
U21ME201	ENGINEERING MECHANICS	L	Т	Ρ	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil .

COURSE OBJECTIVES:

- To expose various laws of force for equilibrium of rigid bodies
- To introduce the concepts of properties of surfaces and solids
- To impart knowledge on the fundamentals of dynamics of particles and rigid bodies

COURSE OUTCOMES (CO)

Upon completion of the course, the student will be able to

CO1: Identify various force systems in a plane (Apply)

CO2: Solve equilibrium of rigid bodies in two dimensions (Apply)

CO3: Calculate the centroid, area and mass moment of inertia for surfaces and solids (Apply)

CO4: Apply the concept of dynamics for particle motions (Apply)

CO5: Determine the friction of elements and dynamics of rigid bodies (Apply)

COURSE ARTICULATION MATRIX:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2	1	-	-	-	-	-	-	-	2	3	-
CO2	3	3	2	1	-	-	-	-	5.	-	-	2	3	-
CO3	3	3	2	1	-	-	-	-		-	-	2	3	-
CO4	3	3	2	1	-	-	-	-	-	-	-	2	3	-
CO5	3	3	2	1	-	-	-	-	-	-	-	2	3	-

SYLLABUS:

UNIT I EQUILIBRIUM OF FORCES

Types of force systems - coplanar concurrent forces - Resultant - Moment of a force and its application - Couples and resultant of a force system equations of equilibrium of coplanar concurrent and non - concurrent force systems Lami's theorem - Resolution of a force into a force and a couple - Polygon law of forces for resultant

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports - Support reactions - Moment of a force about a point and about an axis - Moments and couples - Scalar components of a moment - Varignon's theorem -Single equivalent force - Equilibrium of rigid bodies in two dimensions

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Centroids and centre of mass - Centroids of lines and areas - Rectangular - Circular - Triangular areas by integration -- T section I section and Hollow section by using standard formula -- Theorems of Pappus - Area moments of inertia of plane areas - Rectangular - Circular - Triangular areas by integration - T section - I section - Hollow section by using standard formula - Parallel axis theorem

Head of the Department 22101/2 Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

9

9

and perpendicular axis theorem - Principal moments of inertia of plane areas - Principal axes of inertia - Mass moment of inertia - Mass moment of inertia for prismatic and cylindrical solids 9

UNIT IV DYNAMICS OF PARTICLES

Displacements, velocity and acceleration - relationship - Relative motion - Curvilinear motion. Newton's laws of motion - Work energy equation - Impulse and momentum - Impact of elastic bodies UNIT V FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Friction force - Laws of sliding friction - Equilibrium analysis of simple systems with sliding friction -Wedge friction - Rolling resistance - Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion of simple rigid bodies such as cylinder, disc/wheel and sphere

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
Lootaro					Total	45 Periods

TEXT BOOKS

1. Vela Murali, "Engineering Mechanics", 1st edition, Oxford University Press,2010

- 2. S. S. Bhavikatti, Engineering Mechanics, 3rd edition, New Age International Publishers, 2016
- REFERENCES
- 1. Beer, F.P and Johnston Jr. E.R., "Vector Mechanics for Engineers: Statics and Dynamics", 8th edition, Tata McGraw-Hill Publishing company, New Delhi 2014
- 2. S. Timoshenko, D.H. Young, J.V. Rao, Sukumar Pati, Engineering Mechanics, 4th edition, TMH Education, 2016.
- 3. Sanjay Bansal, R.K. Bansal, A Textbook of Engineering Mechanics, 8th edition, Laxmi Publications Pvt Ltd,2011

	Contin	uous Internal As	sessments	3	
Assessme (100 Mar		Assessm (100 Ma		Total Internal	Final Continuous
Role play Oral Presentation	Written Test	Individual Assignment Group Discussion	Written Test	Assessments	Assessment
40	60	40	60	200	100
				40	60
	То	tal		1	00

SEMESTER II

U21PH201	MATERIALS SCIENCE		Cate	gory	: BS	С
021PH201	(Common to all branches except BME)	L	T	P	J	C
	(comment to an branches except DME)	2	0	0	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To gain the knowledge of conducting and semiconducting materials
- To understand the concepts of magnetic, dielectric and optical properties of materials
- To enhance the knowledge of new engineering materials

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate the electrical characteristics of conducting materials (Understand)

CO2: Interpret the properties and types of semiconducting materials (Understand)

CO3: Compare various types of magnetic materials for engineering applications (Understand)

CO4: Explain the fundamental concepts of dielectric and optical materials (Understand)

CO5: Examine new engineering materials for industrial applications (Understand)

CO-PO MAPPING:

POS	PO1	PO2	PO3	P04	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	Ŧ		-	1	-	-	-	-	-	1	3	-
CO2	3	2	-		-	1	-	-	-	-	-	1	3	-
CO3	3	2	-	-	-	1	-	-	-	-	-	1	3	-
CO4	3	2	-	-	-	1	-	-	-	-	-	1	3	-
CO5	3	2	-	-	-	1	-	-	-	-	-	1	3	-

SYLLABUS:

UNIT I CONDUCTING MATERIALS

Classical free electron theory – Expression for electrical conductivity and thermal conductivity – Wiedemann - Franz law – Drawbacks – Fermi distribution function – Density of energy states in metals

UNIT II SEMICONDUCTING MATERIALS

Intrinsic and Extrinsic semiconductor – Carrier concentration in n-type semiconductor – P-type semiconductor(qualitative) – Applications of semiconductors – Solar cell – LED – Hall effect and its experimental determination

UNIT III MAGNETIC MATERIALS

Origin of magnetism – Día, para and ferro magnetic materials – Domain theory – Soft and hard magnetic materials – Magnetic bubble memories – GMR sensor

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 6

6

DIELECTRIC AND OPTICAL MATERIALS UNIT IV

Dielectrics – Types of polarisation – Electronic polarisation – Dielectric breakdown – Ferroelectrics – Applications of dielectrics - Classification of optical materials - Nonlinear optics - Applications

ENGINEERNG MATERIALS AND CHARACTERIZATION 6 NEW UNIT V TECHNIQUES

SMA - SiC - GaN - Rheological materials - Nanomaterials - Synthesis (Ball milling and CVD) -Quantum dot, quantum wire and quantum well(qualitative) - Characterisation techniques - Powder XRD (qualitative) - SEM

Contact Periods:

Lecture: 30 Periods Tutorial: - 0 Periods P	Practical: - Periods	Project: – Periods
---	----------------------	--------------------

Total: 30 Periods

TEXT BOOKS:

- 1. Wahab M A, "Solid State Physics: Structure and Properties of Materials", 3rd edition, Narosa Publishing House, Chennai, 2018
- Marikani A, "Materials Science", 1st edition, PHI publishers, Chennai, 2017 2

REFERENCES:

- 1. Pillai S O "Solid State Physics", 9th edition, New Age International Publishers, New Delhi, 2020
- 2. Bangwei Zhang, "Physical Fundamentals of Nanomaterials", Chemical Industry Press, China, 2018
- Joginder Singh Galsin, "Solid State Physics An Introduction to Theory", Academic Press, India, 3. 2019
- https://nptel.ac.in/courses/108/108/108108122/ 4.
- https://nptel.ac.in/courses/113/105/113105081/ 5.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar		Total Internal Assessments	End Semester Examinations
Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Individual Assignment / Seminar / Mini Project / MCQ	Written Test	Assessments	
40	60	40	60	200	100
	То	otal		40	60
				10	0

SEMESTER II

	PERSONALITY ENHANCEMENT		Categ	ory:	HSM	
U21EN201	Common to	L	Т	P	J	C
	AD, BM, CH, CE, CS, CS(AIML), EE, EC, ME, MI, IT)	1	0	2	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To develop of personality traits that contributes in the professional environment
- To create a basic awareness about the significance of soft skills in professional and interpersonal communications
- To enhance the level of self-confidence that helps to excel in the leadership skills

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Nurture a deep understanding of personality development and interpersonal relationship for overall self-development (Understand)
- CO2: Communicate proficiently in high-end interviews and in all social situations (Understand)
- CO3: Synthesize complex concepts and present them in speech and writing (Analyse)
- CO4: Negotiate and lead teams towards success (Understand)
- CO5: Present ideas in an effective manner using web tools (Apply)

CO-PO MAPPING:

POs Cos	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P010	PO11	P012	PSO1	PSO2
CQ1	-	-	-	-	-	-	-	-	2	3	-	1	÷	1
CO2	-	-	-	-	-		-	1	2	3	-	1	-	1
CO3	-		-	-	E.	17	-	-	2	3	-	-	-	1
CO4		1.	-	-	-	12	-	-	2	3	-	-	-	1
CO5	-	-		-	-	-	-	1	-	3	-	-		1

SYLLABUS:

UNIT I LEXICAL REASONING

Module:1 Establishing Associations

Activity: Verbal Analogy, Logical Reasoning

Module:2 Lateral Thinking

Activity: Reasoning and Assertions

Module:3 Sentence Completion

Activity: Cloze Test, Single Word Substitutes

UNIT II SOCIAL CORRESPONDENCE

Module:4 Etiquettes

Activity: Brain storming & performing in actions

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

9

Module:5 Introspection

÷

9

9

9

Activity: SWOT Analysis, Goal Setting Module:6 Co-verbal Gesture Activity: Body Language, Non verbal cues UNIT III ART OF NETWORKING Module:7 Addressing a Multitude Activity: Welcome address, Vote of Thanks, Public Speaking Module:8Persuasive Communication

Activity: Making Technical Presentation Module:9 Career Oriented Communication Activity: Face to face Conversation, Mock Interview

UNIT IV CRITICAL THINKING

Module:10 Organizing ideas Activity: Mind Mapping Module:11 Problem Solving Skills

Activity: Conflict management, Case Study

Module:12 Critical Review

Activity: Book/ Movie Review, Comparative Analysis

UNIT V CONTENT WRITING

Module:13 Reports

Activity: Writing Event Report, Project Report Module:14 Writing for Digital platform Activity: Writing Posts, Blogs Module:15 Developing Content Activity: Product Description, Writing Proposals

LIST OF EXERCISES

1.Listening to Inspirational Speech

2.Listening to Product Description

3.Book/Movie Review

4.Presentation

5.Mock Interview

6.Public Speaking

Contact Periods:

Lecture: 30 Periods

Practical: 30 Periods

Project – Periods Total 60 Periods

TEXT BOOKS:

- 1. Meenakshi Raman & Sangeetha Sharma. "Professional English: for AKTU",1st edition, OxfordUniversity Press. 2018.
- 2. Barun. K. Mitra. "Personality Development and Soft Skills", 2nd edition, OUP India, 2016.

Tutorial: - Periods

Head of the Department,

Mechanical Engineering, PR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

41

REFERENCES:

- 1. Mathew Allen. "Smart Thinking: Skills for Critical Understanding and Writing", 2nd edition, OUP India, 2016.
- 2. Means, Thomas L, "English and Communication for Colleges", 4th edition, Cengage 2017
- 3. Using English: "A Coursebook for Undergraduate Engineers and Technologists", 1st edition, Orient Black Swan, 2017

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments		End Semester Examinations
Assessme (Theory (100 Marl	')	Assessment (Practical) (100 Marks		
Individual Assignment / Seminar / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Practical Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25	
25		25	_	50
)		50
		Total	: 100	

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER II

		-im	Cate	gory	: ESG	C
110402002	PYTHON PROGRAMMING	L	т	Р	J	С
U21CSG02	Common to All Branches	2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand syntax and semantics of python programming
- To implement programs using python data structures
- To gain expertise in using python libraries for solving real time problems .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Describe the basic operations of tokens in python (Understand)

CO2: Demonstrate the programs using control statements (Apply)

CO3: Develop programs using python data structures (Apply)

CO4: Implement the exceptions in file-handling concepts (Apply)

CO5: Apply the python libraries in real-world problems (Apply)

CO-PO MAPPING:

Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	2	-	-	-	1	2	2	-	2	-	-
CO2	2	1	1	2	-	-	-	1	2	2	-	2	-	•
CO3	3	2	2	2	-	-	-	1	2	2	-	2	-	-
CO4	3	2	2	2	-	-	-	1	2	2	-	2	-	-
CO5	3	2	2	2	1	-	-	1	2	2	-	2	-	-

SYLLABUS:

LANGUAGE BASICS UNITI

Python interpreter and interactive mode - Tokens - Data types - Numbers and math functions - Input and Output operations - Comments - Reserved words - Indentation - Operators and expressions -Precedence and associativity - Type conversion - Debugging - Common errors in Python

CONTROL STATEMENTS, FUNCTIONS, AND MODULES UNIT II

Selection - Conditional branching statements - if - if-else - Nested-if - if-elif-else statements -Iterative statements - while - for loop - break - continue and pass statements - Functions - Function Definition and Function call - Variable scope and Lifetime - Return statement - Lambda functions or Anonymous functions - Recursion - Modules and Packages

PYTHON DATA STRUCTURES UNIT III

Strings - Slicing - Immutability - Built-in string methods and functions - Concatenating - Appending and Multiplying strings - String modules - List - Creation - Accessing values - Slicing - List methods - In-built functions for Lists - Tuples - Creation - Operations on tuples - Traversing - Indexing and

6

6

6

Slicing – Tuple assignment – In-built functions for tuples – Sets – Creation – Operations – Dictionaries – operations and methods

UNIT IV EXCEPTION AND FILE HANDLING

Exceptions – Errors and Exceptions – Handling exception – Built-in and User-defined exceptions – Files – Types – Operations – Open – Read – Write – Close

UNIT V NUMPY and PANDAS

6

6

Numpy – Introduction – Computations using NumPy functions – Computation on Arrays – Aggregation – Indexing and Sorting – Pandas – Introduction and Basic Pandas Concepts – Data frames – Data Handling

LIST OF EXPERIMENTS

- 1. Programs on selection and Iteration operations.
- Get an integer input from a user. If the number is odd, then find the factorial of a number and find the number of digits in the factorial of the number. If the number is even, then check the given number is palindrome or not.
- 3. Strings and its operations.
- Given two strings, PRINT (YES or NO) whether the second string can be obtained from the first by deletion of none, one or more characters.
- 5. List and its operations.
- 6. Programs for positive and negative indexing.
- 7. Program to check if the given list is in Ascending order or Not.
- 8. Tuples and its operations.
- 9. Python program to convert a tuple to a string.
- 10. Python program to reverse a tuple.
- 11. Sets and its operations.
- 12. Python program to check if a set is a subset of another set.
- 13. Dictionaries and its operations.
- 14. Python program to iterate over dictionaries using for loops.
- 15. Computations using NumPy functions.
- 16. NumPy program to convert a list of numeric value into a one-dimensional NumPy array.
- 17. NumPy program to convert a list and tuple into arrays.
- 18. Data manipulations using Pandas.
- 19. Program to convert a NumPy array and series to data frames.
- 20. Program to add, subtract, multiple and divide two Pandas Series.
- 21. Program to retrieve and manipulate data using dataframes.

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical:	30 Periods	Project	- Periods
					Total	60 Periods

TEXT BOOKS:

- 1. Reema Thareja, "Python programming: Using problem solving approach", 1st edition, Oxford Press, 2017
- William McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd edition, Shroff/O'Reilly Publication, 2017

REFERENCES:

- Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016
- Ashok Namdev Kamthane and Amit Ashok Kamthane, "Programming and Problem Solving with Python", 2nd edition, McGrawHill Education, 2018
- Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach", 1st edition, Pearson India Education Services Pvt. Ltd., 2016
- 4. https://python-iitk.vlabs.ac.in/List%20of%20experiments.html

Contin	uous Inter	nal Assessments	End Semester Examinations				
Assessme (Theory (100 Mar	()	Assessment (Practical) (100 Marks)	126	Theory Examinations	Practical		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Evaluation of Laboratory Observation, Record (Rubrics Based		Examinations (Examinations will be conducted for 100 Marks)		
40	60	75	25				
25		25	No.	25	25		
	5	0			50		
		Tota	al: 100	Situ .			

EVALUATION PATTERN:

0

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

SEMESTER II

			Cate	gory:	ESC	2
U21ECG02	BASICS OF ELECTRONICS ENGINEERING (For ME)	L	т	Р	J	С
	(, , , , , , , , , , , , , , , , , , ,	2	0	2	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- · To study about the basic electronics components and their applications
- To explore operational amplifiers for different applications
- To introduce the digital circuits and microcontrollers

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Illustrate principles of electronic components (Understand)

- CO2: Summarize the applications of diodes and transistors (Understand)
- CO3: Explain about op-amp and its applications (Understand)
- CO4: Compare sequential and combinational logic circuits (Understand)

CO5: Demonstrate applications of 8051 and Arduino (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	1	-	-	-	-	-	1	3	2	-	2		
CO2	2	1	-	-	-	-	-	1	3	2	-	2		
CO3	2	1	-	1	-	-	-	1	3	2	-	2		
CO4	2	1	-	-	-	-	-	1	3	2	-	2		
CO5	2	1	-		-	-	-	1	3	2	-	2		
Correlation	level	s:	1: Slig	ght (Lo	w)	2: M	oderat	e (Med	dium)		3: Sub	stantia	al (High)

SYLLABUS:

UNIT I BASIC ELECTRONIC COMPONENTS

Passive and active components – Construction, Operation and characteristics of PN junction diode and Zener diode – Construction and Operation of NPN and PNP transistors

UNIT II APPLICATIONS OF DIODES AND TRANSISTOR

Half wave, full wave and bridge rectifiers, Zener diode voltage regulator - CE amplifier, frequency response - Oscillator - Hartley and RC phase shift

UNIT III OPERATIONAL AMPLIFIER

Operational amplifier – Ideal characteristics – Inverting and non-inverting amplifier – Applications of op-amp – Adder, subtractor, integrator, differentiator, comparator.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407. 6

6

UNIT IV DIGITAL CIRCUITS

Number systems, Boolean algebra, Logic gates, combinational circuits – Adder, subtractor, sequential logic circuits – Latch and flip-flop

UNIT V INTRODUCTION TO MICROCONTROLLER

Introduction to microprocessor – 8051 Microcontroller – Architecture, instruction set, simple programs – Arduino controller

LIST OF EXPERIMENTS (INDICATIVE)

- 1. Study the volt-ampere characteristics of PN diode and Zener diode
- 2. Applications of PN diode as Half and Full wave rectifier
- 3. Realization of Zener diode as regulator
- 4. Characteristics of CE amplifier
- 5. Realization of adders and subtractor using logic gates
- 6. Simple application program using 8051 Microcontroller

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical: 30 Periods	Project:	- Periods
				Total:	60 Periods

TEXT BOOKS:

- 1. Donald A Neaman, "Semiconductor Physics and Devices", 4th edition, Tata McGraw-Hill Inc. 2012
- S. Salivahanan, N.Sureshkumar, A. Vallavaraj, "Electronic Devices and Circuits", 3rd edition, Tata McGraw–Hill Inc., 2010

REFERENCES:

- 1. R. S. Sedha, "A Textbook of Applied Electronics", 3rd edition, S.Chand & Company Ltd, 2013
- 2. M.Morris Mano, Michael D. Ciletti "Digital Design", 6th edition Pearson, 2018
- Soumitra Kumar Mandal, "Microprocessors and Microcontrollers Architecture Programming and interfacing using 8051, 8086 & 8051", 1st edition, Tata McGraw Hill, 2011
- 4. Roy Chaudary, "Linear Integrated Circuits", 6th edition, New Age International Publishers, 2021

Contin	uous Inter	nal Assessments		End Semester	Examinations
Assessmo (Theory (100 Mar	()	Assessment (Practical) (100 Marks)		Theory	Practical
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)
40	60	75	25		
25		25		25	25
	5	0	0.00	5	50
		Tota	1: 100		

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Coordinator can choose any one / two components based on the nature of the course.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

47

KPRIET

SEMESTER II

			Cate	gor	ES	SC
U21ME202	INTERFACING OF ELECTRONICS & ELECTRICAL COMPONENTS AND TROUBLESHOOTING	L	Т	Ρ	J	С
		0	0	3	0	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To provide exposure in interfacing electronic components with hardware
- To provide hands on training experiences in interfacing of electronic components
- To provide knowledge on electrical components and circuits

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify various electrical/electronic components used for interfacing (Understand)

- CO2: Connect various sensors with display unit (Understand)
- CO3: Perform operations such as rotation of stepper motor, servo motor, controlling of valves and pumps (Apply)

CO4: Apply IOT for smart home automation system (Apply)

CO5: Perform troubleshooting of various electrical and electronic components (Apply)

·	1	1	1	1	1	1	1	1	1			1		
POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	-	-	-			-	-	-	÷			-	2	-
CO2	3	-		-	3		•	-	3	3	-	-	2	-
CO3	3	-	-	-	3	-	-	-	3	3	-	-	2	.e.,
CO4	3	-	-	-	3	-	140	-	3	3	-	-	2	-
CO5	3	-	-	-	3	-	-		3	3	-	-	2	-

CO DO MADDING.

List of experiments:

1.

Study on basics of interfacing:

- i. I/O Ports of Microcontroller
- ii. I/O Functions of Arduino
- iii. Basic electrical and electronics components used for interfacing
- 2. Interfacing of LCD display with Microcontroller.
- 3. Interfacing different sensors with Arduino and display the outputs.
- Interfacing of stepper motor to make it run in required step angles with Arduino. 4.
- 5. Interfacing of servo motor with Arduino to control a robotic arm.
- Interfacing of solenoid valve with Arduino for controlling the flow of liquid. 6.
- 7. Interfacing of water pump with Arduino for smart irrigation system.

01/24 Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

8. Interfacing of software/hardware for smart home automation using IOT.

9. Troubleshooting of electronic circuits/components.

10. Troubleshooting common electrical problems.

Contact Periods:

11.1

Lecture: - Periods	Tutorial: - Periods	Practical: 45 Periods	Project:	- Periods
			Total:	45 Periods

EVALUATION PATTERN:

Continuous Internal Assessm		
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100		100
60		40
Carl and the	A Sec. Summer	100

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

		1ºCC	Cate	gory	: BSC	3
U21MA303	FOURIER ANALYSIS AND BOUNDARY VALUE PROBLEMS	L	T	Р	J	С
	(Common to CE, EE, ME, MI)	3	1	0	0	4

SEMESTER III

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the concepts of partial differential equations and its solutions
- To understand the concept of Fourier series and Fourier transform techniques in the field of engineering
- To understand the mathematical aspects that contribute to the solution of one and two dimensional PDEs

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply the fundamental concepts of partial differential equations to solve real life practical applications (Apply)
- CO2: Demonstrate Fourier series to study the behaviour of periodic functions and their applications in system communications and digital signal processing (Apply)
- CO3: Analyze the spectral characteristics of signals using Fourier transforms to find the discrete/continuous function arising in signals (Apply)
- CO4: Apply Fourier series to solve an initial-boundary value problem for one dimensional wave and heat equation (Apply)
- CO5: Apply Fourier series to solve an initial-boundary value for two dimensional heat equations (Apply)

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	3	2	-	-	-	-	-	-	-		-	1	2	-
- CO3	3	2	-	-	-	-		-	-	-	-	-	2	-
CO4	3	2	-:	-	-	-	-	-	-	-	-	-	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-	2	-

CO-PO MAPPING:

SYLLABUS:

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations – Singular integrals – Solutions of standard types of first order partial differential equations – Lagrange's linear equation – Solution methods for second order homogeneous equations with constant coefficients

UNIT II FOURIER SERIES

9+3

9 + 3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range series – Parseval's identity – Harmonic analysis

Flead of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

1

22

						9 + 3
UNIT III	FOURIER TR	RANSFORM	A		5	Transforms
Fourier tra	insform pair – F functions – Con	ourier sine	and cosine tra orem – Parse	nsforms – Properties (with val's identity	iout proot) –	
of simple i	unctions con		NUNDARY W	LUE PROBLEMS		9 + 3
UNIT IV	ONE DIMENS	SIONAL B	JUNDART VA	LULTROBLEMO		limeneiepol
heat flow	equation (unste	ady state)		e dimensional wave equa		9+3
UNIT V	TWO DIMEN	ISIONAL B	OUNDART V.	ALOL I HOBLEING	(O. 1	- farma only)
Fourier se separation	eries solution – n of variables	Two dime	nsional (stead	y state) heat flow equatio	ns (Cartesia	n torm only)
Contact I	Periods:					-
Lecture:	45 Periods	Tutorial:	15 Periods	Practical: - Periods	Project	 Periods
Lecture.	401 61000	1 cristian			Total	60 Periods

TXT BOOKS:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 10th edition Wiley India Pvt Ltd, New Delhi,
- Grewal B. S, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, 2017. 2.

REFERENCES:

- 1. Bali N.P and Manish Goyal, "A text book of Engineering Mathematics", 12th edition, Laxmi
- 2. Wylie C. R. and Barrett L. C, "Advanced Engineering Mathematics", 6th edition, Tata McGraw-Hill,
- Narayanan S, Manicavachagom Pillay T. K. and Ramanaiah G, "Advanced Mathematics for Engineering Students", Vol. II & III, 2nd edition, S. Viswanathan Publishers Pvt. Ltd, Chennai, 1998. 3.

EVALUATION	PATTERN:
-------------------	----------

		uous Internal Ass					
Assessme (100 Mark		Assessme (100 Marl		Total Internal	End Semeste		
Individual Assignment / Seminar / MCQ		Individual Assignment / Seminar / MCQ		Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	Тс	otal		40	60		
				10	0		

011 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

E

B.E. – ME – R2021	– CBCS SEMESTER III	Allust	lcad	entit rses	K	PRIET	
U21ME301		*	Cate	gory	PC		
0211112001	ENGINEERING THERMODYNAMICS	3	1	P 0	J	C 4	
				-		-	

PRE-REQUISITES:

U21PH101 - Engineering Physics

COURSE OBJECTIVES:

- To provide basic thermodynamic principles and laws
- To study the behaviour of substance and thermodynamic relations
- To develop the skills to analyse and design thermodynamic systems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the basic concepts and first law of thermodynamics with applications (Understand)

CO2: Apply second law of thermodynamics to assess performance of simple thermodynamic systems (Apply)

CO3: Determine the thermodynamic state of the pure substance using standard tables (Apply)

CO4: Explain mathematical models for the real time thermodynamic system (Understand)

CO5: Explain the properties of dry air and calculate the properties of the air as a system (Understand)

CO-PO MAPPING:

Pos Cos	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	-	-	-	· -	-	-	-	-	-	-
CO2	3	2	2	. •	-	-	-	-	-	-	-	-	-	-
CO3	3	2	2	-	-	-	-	-	120	-	-	-	-	-
CO4	3	2	2	-	-	-	-		-		-	-	-	
CO5	3	2	2	-	-	-	-	-	-	-	-	_	-	

SYLLABUS:

UNITI FUNDAMENTAL CONCEPTS AND FIRST LAW

Introduction, Basic Concepts: Thermodynamic system and control volume - Microscopic and macroscopic point of view - Thermodynamic properties - State of a substance - Process and cycle Thermodynamic equilibrium - Concept of Continuum - Quasi - Static process - The Zeroth Law of Thermodynamics - Temperature scales - First law of Thermodynamics: First law for a closed system undergoing a cycle and change of state - Energy PMM1 first law of thermodynamics for steady flow process - Steady flow energy equation applied to nozzle - Diffuser - Boiler - Turbine - Compressor pump - Heat exchanger and throttling process - Filling and emptying process

UNIT II SECOND LAW OF THERMODYNAMICS AND AVAILABILITY

Second law of thermodynamics: Limitations of first law of thermodynamics Kelvin - Planck and Clausius statements and their equivalence - PMM2 - Causes of irreversibility - Carnot theorem

Head of the Department Mechanical Engineering, 2012 KPR Institute of Engineering and Technology, Arasur, Coimbaiore - 641407.

9+3

52

9+3

9+3

9+3

9+3

corollary of Carnot theorem – Thermodynamic temperature scale – Entropy: Clausius theorem property of entropy – Inequality of Clausius, entropy change in an irreversible process, principle of increase of entropy – Entropy change for non – flow and flow processes Exergy: Exergy of a heat input in a cycle exergy destruction in heat transfer process exergy of finite heat capacity body exergy of closed and steady flow system irreversibility second law efficiency

UNIT III PROPERTIES OF PURE SUBSTANCES AND GAS MIXTURES

Ideal gas equation, Properties of Ideal Gases – Equations of State – Law of Corresponding States Properties of Mixtures – Compressibility, universal compressibility chart. Pure Substances – PVT Surfaces – Properties of steam – Saturation Temperature and Pressure – Use of property tables – TS diagrams – Mollier Chart. Introduction to Vapor Power cycles

UNIT IV THERMODYNAMIC RELATIONS

General Thermodynamic Relations – Combined First and Second law Equations – Helmholtz and Gibb's functions – Application – Maxwell's Relations – Derivation, Tds Equations the Clapeyron Equation Equations for internal energy – Enthalpy and entropy – Specific heats – Throttling process Joule Thomson Coefficient inversion curve

UNIT V PSYCHROMETRY

Basic Definitions – Properties of atmospheric air – Psychometric process – Usage of psychometric charts – Simple Problems in Psychometry using formulas and charts – Applications of Psychrometry

Contact Periods:

Lecture:	45 Periods	Tutorial:	15- Periods	Practical: - Periods	Project	- Periods
					Total	60 Periods

TEXT BOOKS:

- 1. P. K.Nag; Engineering Thermodynamics, 5th edition McGraw Hill, 2013
- R.K. Rajput, "A Textbook of Engineering Thermodynamics 5th edition", Published by Laxmi Publications Pvt. Ltd, 2011

REFERENCES:

- 1. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.
- Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey, "Fundamentals of Engineering Thermodynamics, 8th edition", Wiley, 2014
- 3. Adrian Bejan J. A. Jones, "Advanced Engineering Thermodynamics, Fourth Edition" Wiley, 2016
- 4. Yunus a. Cengel& Michael a. Boles, "Thermodynamics", 8th edition 2015, McGraw-Hill

EVALUATION PATTERN:

*Individual Assignment / Writt	*Individual	- AND AND A STREET	Total Internal	End Semester
Case Study / Tes Seminar / Project / MCQ	Case Study /	Test	Assessments	Examinations
40 60	40	60	200	100
	Total		40	60

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER III

		* Co	Cate	gon	r: PC	С
U21ME302	MANUFACTURING TECHNOLOGY - I	L	т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

U21CY101 - Engineering Chemistry

COURSE OBJECTIVES:

- To gain knowledge in material casting processes.
- To introduce students to foundry practices and product design considerations
- To provide an overview of sheet metal & welding processes.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the pattern and molding methods with their associated merits and demerits (Apply)

CO2: Understand the casting-melting process and testing methods (Understand)

CO3: Understand the various welding processes (Understand)

CO4: Understand the hot and cold working processes (Understand)

CO5: Understand the various sheet metal working process (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	2	4	-	-	-	-	-	-	-	-	-	2	2
CO2	3	2	-	•	-	-	-	-	-	-	-		2	2
CO3	3	2	-	-	-	-	-		-	÷	-	-	2	2
CO4	3	2			-	-	-	-	-		-	-	2	2
CO5	3	2	-	-	14	-	-		-	-	-	-	2	2

SYLLABUS:

UNIT I PATTERNS

9

PATTERNS AND PATTERN MAKING

Introduction to Foundry – Steps involved in casting – Advantages – Limitations and applications of casting process. Pattern types – Allowances for pattern – Pattern materials – Color coding and storing of patterns

MOULDING: Moulding methods and processes – Materials – Equipment – Moulding sand ingredients – Essential requirements – sand preparation and control – Testing – Cores and core making – Design considerations in casting – Gating and Riser – Directional solidification in castings – Metallurgical aspects of Casting – Introduction to moulding software's

UNIT II METAL CASTING

Casting Processes: Sand castings – Pressure die casting – Permanent mould casting – Centrifugal casting – Precision investment casting – Shell moulding – Continuous casting – Squeeze casting – Electro slag casting – Fettling and finishing – Defects in Castings – Casting of non – Ferrous materials **Melting – Pouring and Testing:** Melting furnaces – Crucibles oil fired furnaces – Electric furnaces – Cupola – Selection of furnace – Degasification – Inoculation – Pouring techniques casting defects

and Inspection of castings

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arenur, Colmbatore - 841407.

METAL JOINING UNIT III

Basic Joining Processes: Cold welding - Diffusion bonding - Explosive welding - Ultrasonic welding - Friction welding - Forge welding - Roll welding and Hot pressure welding processes -Resistance welding (spot - Seam - Projection - Percussion - Flash types) - Atomic hydrogen arc welding - Thermit welding - Flame cutting - Use of Oxyacetylene - Modern cutting processes - Arc cutting - Robotic welding 9

FORMING PROCESSES UNIT IV

Elastic and plastic deformation - Concept of strain hardening - Operating principle - Equipment -Types - Merits - Demerits and applications of hot and cold working process - Rolling - Forging -Extrusion - Swaging - Wire and tube drawing - Load consideration of hot and cold working processes

SHEET METAL WORKS UNIT V

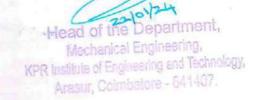
Introduction - Sheet metal characteristics - Shearing mechanisms - Formability of sheet metal -Testing methods - Basic sheet metal operations - Principle - Equipment - Types - Merits - Demerits and applications. Special forming process - Hydro forming - rubber pad forming - Metal spinning -Introduction to explosive forming - Magnetic pulse forming - Peen forming - Super plastic forming -Micro forming

Contact Periods:

Contact	chicaci		m II Deviada	Project	- Periods
Lecture:	45 Periods	Tutorial:	Practical: - Periods	Fillet	- I GIIGGO
Lecture.	iter energy			Total	45 Periods

TEXT BOOKS:

Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice hall India (p) Ltd, 1999 1.


P.N.Rao - "Manufacturing Technology", 5th edition, MH Ltd., 2013 2

REFERENCES:

- 1. Serope Kalpakjian; Steven R.Schmid, "Manufacturing Engineering and Technology", 4th edition, Prentice Hall,2000
- 2. R.B Gupta, "Foundry Engineering" Satyaprakashan, 3rd edition, Tata McGraw Hill Publishing Company Ltd, 2012
- 3. Lal.O.P Mand Khanna A, "Text Book of Foundry Technology", 5th edition, Dhanpat Rai and Sons,2013

	Conti	nuous Internal Ass	essments		_	
Assessment I (100 Marks)		Assessmen (100 Marks			End	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Semester Examinations	
40	60	40	60	200	100	
	Т	otal	1.16	40	60	
				1	00	

EVALUATION PATTERN:

9

a

SEMEST	ER III
--------	--------

U21ME303			Cal	egory	PCC	;
	ENGINEERING MATERIALS AND METALLURGY	L	т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

U21PH201 - Materials Science

COURSE OBJECTIVE:

- Impart knowledge on the structure Properties Treatment Testing and applications of metals and non – Metallic materials
- Identify and select suitable materials for various engineering applications
- Impart knowledge on the various material testing methods

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss on the alloys and phase diagrams of steel (Apply)

CO2: Explain the types of on ferrous and non-ferrous metals and its alloys (Apply)

CO3: Select and apply the heat treatment processes to modify the material properties (Apply)

CO4: Explain the properties and applications of polymer composites and ceramics (Apply)

CO5: Test the mechanical properties of the materials by using standards (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	-	-	-		-	-	-	-	-	-	-	3	-
CO3	3	-	-	-	-	4	-		-	-	-	-	3	-
CO4	3	-		-	-		-	-	-	-		-	3	
CO5	3	- 1	-	-	3	-	-	-	-	-	-	-	3	

SYLLABUS:

UNIT I ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions – Substitution land interstitial – Phase diagrams – Isomorphous – Eutectic – Eutectoid – Peritectic – and peritectoid reactions – Iron – Carbon equilibrium diagram – Iron and carbon phase diagram – Phases and reactions in iron – Carbon diagram – TTT diagram – Continuous cooling curve

UNIT II FERROUS AND NON-FERROUS METALS

Classification of steel and cast Iron microstructure – Properties and application – Effect of alloying additions – Stainless and tool steels – HSLA – Maraging steels – Cast Iron – Grey – White – Malleable – Spheroidal – Alloy cast irons – Copper and copper alloys – Brass – Bronze and Cupronickel – Aluminium and AI – Cu – Precipitation strengthening treatment – Bearing alloys – Mg – Alloys – Ni – Based super alloys and Titanium alloys

Head of the De Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

9

aineern

Centre fo

Academic Courses

mstif

HEAT TREATMENT UNIT III

Definition of Heat Treatment - Full annealing - Stress relief - Recrystallisation and spheroidising -Normalising - Hardening and Tempering of steel - Isothermal transformation diagrams - Cooling curves superimposed on I.T. diagram CCR - Hardenability - Jominy end quench test - Austempering - Martempering - Case hardening - Carburizing - Nitriding - Cyaniding - Carbonitriding - Flame and Induction hardening - Vacuum and Plasma hardening

NON-METALS UNIT IV

Non - Metals: Polymers - Thermoplastics and thermosets - Properties and applications : Acrylonitrile butadiene styrene - Polyamide - Polyphenyleneoxide - Polyetheretherketone - Urea formaldehyde -Phenol formaldehyde and epoxy) - Ceramics: properties and applications of SiC- Al2O3 and PSZ -Introduction to composites: Types of composites - MMC - CMC and PMC - Applications and smart materials - Biomaterials - Smart materials - Shape memory alloys

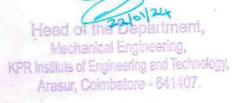
MECHANICAL PROPERTIES AND MATERIAL TESTING UNIT V

Mechanism of plastic deformation - Slip and twinning - Types of fracture - Ductile and brittle - Testing of materials under tension - Testing of materials under - compression and shear loads - Hardness test (Brinell Vickers - Rockwell - microhardness) - Impact test - Fatigue failure (SN Curve) - Creep failure mechanisms - Testing of corrosion

Contact Periods:

Lecture:	45 Periods	Tutorial:	Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:


- 1. Kenneth G Budinski and Michael K Budinski, "Engineering Materials properties and selection", 9th edition, PHI learning private limited, 2016
- William D. Callister Jr.; David G. Rethwisch, "Material Science and Engineering", 10th edition, An 2 introduction, Wiley India, 2018

REFERENCES:

- 1. Avner S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1994
- 2. G. E. Dieter, "Mechanical Metallurgy", 3rd edition, McGraw Hill, 2017
- 3. Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", 2nd edition, Viva Books Pvt.Ltd., New Delhi,2015
- 4. Raghavan.V. "Materials Science and Engineering", 5th edition, Prentice Hall of India Pvt. Ltd., 2005

Assessme (100 Mark	1000	Assessment (100 Marks)				
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation- Record (Rubrics Based Assessments)	Test	Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
	Tot	al		40	60	
				1	00	

EVALUATION PATTERN:

9

57

9

B.E. – ME – R20	21 - CBCS	Cent			(
	SEMESTER III	Coul		10.01	2/	Learn Deyand
U21ME304	FLUID MECHANICS AND APPLICATIONS	L	T	P	J	С
		2	0	2	0	3

Ene lea

PRE-REQUISITES:

U21PH101 - Engineering Physics

COURSE OBJECTIVES:

- To learn the fluid properties and their flow dynamics.
- To solve the fluid flow problems and analyze the performance of the hydraulic machines.
- To impart knowledge of dimensional analysis in fluid flow.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Determine the properties of fluids and solve fluid dynamics problems (Apply)

CO2: Calculate various losses in fluid flow through the pipes (Apply)

CO3: Develop the models for the fluid flow phenomena (Apply)

CO4: Investigate the performance of pumps (Apply)

CO5: Evaluate the performance of turbines (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	1	2	3	-	-	-	-	-	-	1	1	-
CO2	3	3	1	2	3		-		-	-	-	1	1	-
CO3	3	3	1	2	-	-	-	-	-	-	-	1	1	-
CO4	3	3	1	2	3	•	-	-	-	-	-	1	1	-
CO5	3	3	1	2	3		-	-	-	-	-	1	1	-

SYLLABUS:

UNIT I FLUID PROPERTIES, STATICS AND DYNAMICS

6

6

Importance & applications of fluid mechanics. Units and Dimensions – Properties of fluids – Mass density – Specific weight – Specific volume – Specific gravity – Viscosity – Compressibility – Surface tension – Capillarity. Pressure and its measurement (description only)

Introduction to fluid kinematics and dynamics: types of fluid flow – continuity equation – Euler's equation of motion – Bernoulli's equation and its applications – momentum equation – moment of momentum equation

UNIT II BOUNDARY LAYER AND FLOW THROUGH PIPES

Boundary layer concepts – types of boundary layer thickness – Hagen – Poiseuille equation. Losses in pipes – loss due to friction and Darcy Weisbach equation –Moody diagram – minor losses –hydraulic gradient and total energy line – flow through pipes in parallel and series

DIMENSIONAL ANALYSIS UNIT III

Introduction to dimensional analysis - Dimensional homogeneity - Methods of dimensional analysis - Similitude and its types - Dimensionless numbers - Model analysis and model laws - Undistorted and distorted models

HYDRAULIC PUMPS UNIT IV

Definition and classifications - Efficiencies - Centrifugal pumps - Working principle - Velocity triangles - Work done by impeller - Specific speed - Performance curves Reciprocating pumps - Working principle - Indicator diagram - Pressure vessel - Simple problems

HYDRAULIC TURBINES UNIT V

Classification of turbines - Pelton Francis and Kaplan turbine: Working principles - Heads and efficiencies - Velocity triangles - Work done by the runner - Draft tube - Specific speed - Unit quantities - Performance curves - Simple problems

LIST OF EXPERIMENTS

- 1. Verification of Bernoulli's theorem.
- 2. Calibration of a Venturimeter.
- 3. Calibration of an Orifice meter.
- 4. Calibration of a rotameter.
- 5. Determination of co-efficient of friction in a pipe flow.
- Performance characteristics of a centrifugal pump.
- Performance characteristics of a reciprocating pump.
- 8. Performance characteristics of a turbine.

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical: 30 Period	s Project	- Periods
Lootaro.	00101000			Total	60 Periods

TEXT BOOKS:

- 1. Bansal R.K., "Fluid Mechanics and Hydraulic Machines", 10th edition, Laxmi Publications Pvt. Ltd., New Delhi,2018.
- Modi P.N. and Seth S.M., "Hydraulics & Fluid Mechanics including Hydraulic Machines", 22nd 2. edition, Standard Book House New Delhi, 2019.

REFERENCES:

- Jain A.K., "Fluid Mechanics Including Hydraulic Machine", 12th edition, Khanna Publishers, 2016. 1
- White, F.M., "Fluid Mechanics", 8th edition, Tata McGraw Hill, New Delhi, 2016.
- 3. Rajput R.K., "A Text Book of Fluid Mechanics and Hydraulic Machines", 6th edition, S Chand & Co Ltd. New Delhi, 2016.

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

59

6

×.,

÷.,

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments		End Semester	Examinations			
(Theor	Assessment I Assessme (Theory) (Practic (100 Marks) (100 Mar		ctical) Marks) The		Practical			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)			
40	60	75	25					
25	25 25			25	25			
	5	0		5	0			
		Tota	l: 100					

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

.

SEMESTER III

			Ca	legor	Y PC	5
	SOLIDS	L	Т	P	J	С
U21ME305	MECHANICS OF SOLIDS	3	0	2	0	4

PRE-REQUISITES:

U21ME201 - Engineering Mechanics

COURSE OBJECTIVES:

- To impart the concepts of stress and strain in various elements, principal stresses and principal planes
- To impart the knowledge of shearing force, bending moment, slope and deflection due to external loads in the beams and their effect on stresses
- To identity the torsion in the shaft and to design the spring, colums and thin cylinders

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Determine the values of stress- strain and deformation in the elastic region for uniaxial stress conditions (Apply)
- CO2: Solve the shear force and bending moment of beams with transverse loading and evaluate stresses from forces and moments (Apply)
- CO3: Choose a suitable method of solving for deflection and slope of beams under transverse loading (Apply)
- CO4: Design a shaft using torsion equation and solve for various spring parameters (Apply)
- CO5: Apply theories to design columns and thin cylinders and determine the hardness and impact strength of materials (Apply)

PO10 PO11 PO12 PS01 **PSO2** POs P09 PO3 PO4 PO5 PO6 P07 **PO8** PO2 PO1 Cos 2 ------3 3 3 --CO1 2 -----... -3 3 3 --CO2 2 ---.... -. 3 3 3 --CO3 2 ---. ---3 3 --3 -CO4 2 --_ 3 ---3 3 CO5

CO-PO MAPPING:

SYLLABUS:

UNIT I STRESS - STRAIN AND DEFORMATION OF SOLIDS

9

Rigid bodies and deformable solids – Tension – Compression and Shear Stresses – Deformation of simple and compound bars – Thermal stresses – Elastic constants – Volumetric strains – Stresses on inclined planes – Principal stresses and principal planes – Mohr's circle of stress

UNIT II TRANSVERSELOADING ON BEAMSAND STRESSES IN BEAM

Beams – Types – Transverse loading on beams – Shear force and bending moment in beams Cantilevers – Simply supported beams and overhanging beams – Theory of simple bending – Bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution

Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams – Conjugate beam and strain energy – Maxwell's reciprocal theorems

UNIT IV TORSION AND SPRINGS

Torsion formulation – Stresses and deformation in circular and hollows shafts – Stepped shafts – Compound Shafts – Deflection in shafts fixed at the both ends – Stresses in helical springs –Deflection of helical springs – Carriage springs

UNIT V COLUMNS AND THIN CYLINDERS

Columns – Euler's theory and Rankine's theory of columns – Effect of eccentricity – Stresses in thin cylindrical shells due to internal pressure – Circumferential and longitudinal stresses and deformation in thin cylindrical shell – Spherical shells subjected to internal pressure – Deformation in spherical shells

LIST OF EXPERIMENTS

1. Tension test on a mild steel rod

2. Double shear test on mild steel and aluminium rod

3. Torsion test on mild steel rod

4. Impact test on metal specimen

5. Hardness test on metal specimen - Brinell and Rockwell Hardness

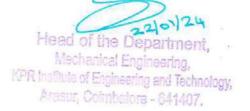
6. Deflection test on beams

7. Compression test on helical springs

8. Strain measurements using Rosette strain gauge

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: 30 Periods Pro


Project – Periods Total 75 Periods

TEXT BOOKS:

- 1. Bansal. R.K. "Strength of Materials", 6th edition, Laxmi Publications (P) Ltd., 2022
- 2. Rattan.S.S. "Strength of Materials", 3rd edition, McGraw Hill Publishing co.Ltd., New Delhi,2016

REFERENCES:

- 1. Jindal U.C. "Strength of Materials", 1st edition, Asian Books Pvt. Ltd., New Delhi,2012
- Egor. P.Popov "Engineering Mechanics of Solids" 2nd edition, Prentice Hall of India, New Delhi,2015
 Section Delhi De
- Subramanian R. "Strength of Materials", Oxford University Press, 3rd edition, Oxford Higher Education Series, 2016
- Ferdinand P.Been; Russell Johnson J.R.and John J. Dewole. "Mechanics of Materials", 8th edition, Tata McGraw Hill Publishing co.Ltd., New Delhi,2019

9

9

160

4 11 14

100 0

÷

12

10

٦

EVALUATION PATTERN:

Contin	uous Interr	al Assessments		End Semester	Examinations			
Assessme (Theory	Assessment I (Theory) (100 Marks)		11	Theory Examinations	Practical Examinations			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	(Examinations will be conducted for 100 Marks)	(Examinations will be conducted for 100 Marks)			
40	60	75	25	25-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
25 25			35	15				
	5	50			50			
		Tota	al: 100	0.001				

SEMESTER III

U21ME306			Cate	gory:	PCC	;
	MANUFACTURING TECHNOLOGY LABORATORY - I	L	Т	Ρ	J	С
*		0	0	4	2	3

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- Study and practice various operations in lathe, shaper, drilling and milling machines
- Equip practical knowledge on machining
- Study and practice various operations in foundry and welding

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Make the work piece by performing various lathe operations (Apply)

CO2: Join metals using arc welding (Apply)

CO3: Use special machine tools to perform shaping operations (Apply)

CO4: Use different molding pattern and prepare sand molds (Apply)

CO5: Produce sheet metal components using sheet metal forming processes (Apply)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	2	1	-	3	-	-	-	2	-		2	3	. 2
CO2	2	2	1	-	3	-	-	-	2	-	-	2	3	2
CO3	2	2	1	-	3	-	-	-	2	-	-	2	3	2
CO4	2	2	1	-	3	-	-	-	2	-	-	2	3	2
CO5	2	2	1	-	3	-	-	-	2	-	-	2	3	2

LIST OF EXPERIMENTS

- 1. Taper Turning
- 2. External & Internal Thread cutting
- 3. Thread Cutting
- 4. Eccentric Turning
- 5. Knurling
- 6. Square and hexagonal head shaping
- 7. Fabrication of simple structural shapes using Gas Metal Arc Welding
- 8. Joining of plates and pipes using Gas Metal Arc Welding/ Arc Welding /Submerged arc welding
- 9. Preparation of green sand moulds
- 10. Manufacturing of simple sheet metal components using shearing and bending operations
- 11. Manufacturing of sheet metal components using metal spinning on a lathe

J component

1. Application in Fast production of gear prototypes – Case study/mini project Contact Periods:

Lecture: – Periods	Tutorial: - Periods Practical: 30 Periods	Project Total	30 Periods 60 Periods
. KE	Head of the Department, Mechanical Engineering, R Institute of Engineering and Technology,	10	64
	Arasur, Coimbatore - 641407.		

REFERENCES:

, ÷

- 1. Heine Loper and Rosenthal. "Principles of Metal Casting", 4th edition, Tata Mc Graw Hill Publishing Co Ltd., 2015 2. E.H Doehler. "Die Casting", 5th edition, McGraw Hill Book Co.1991
- 3. T.R Banga and R.L Agrawal. "Foundry Engineering", 4th edition, Khanna Publishers, 1992

EVALUATION PATTERN:

Continu	ous Inte	ernal Asse	ssments		End Semester Examinations			
Assessment I (Pra (100 Marks)			ssessmen (Project) 100 Marks	(and share)	Practical			
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Review 1	Review II	Review III	Practical Examinations (Examinations will be conduct for 100 Marks)			
75	25	15	25	60				
25			25		50			
-		50			50			
		194	Tota	al: 100				

22/01/24 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

Enginad	
1100	20
E Centre for	KPRIET
E Academic	Lasm Beyond
Courses to	1

SEMESTER IV

U21MA404		eimb	Categ	ory:	BSC	2
	STATISTICS AND NUMERICAL METHODS	L	Т	Р	J	С
	5 Š	3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the concepts of probability and statistics in the field of engineering
- · To understand the concepts of testing the hypothesis for large and small samples
- To understand the concepts in design of experiments in the field of engineering

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Apply probability axioms and the moments of discrete and continuous random variables to core engineering problems (Apply)
- CO2: Analyze large and small sample tests and perform small sample tests based on Chi-square, t and F distributions (Understand)
- CO3: Design an experiment with proper observations and measurement to get a valid result using various design methods (Understand)
- CO4: Identify the basic concepts of solving algebraic and transcendental equations (Understand)
- CO5: Solve initial value problems of ordinary differential equations using numerical techniques (Understand)

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	1	2	1
CO2	3	2	-	-	-	-	-	-	-	-	×.	-	1	1
CO3	3	2	-	-	-	120	-	-	-	-	-	-	1	2
CO4	2	2	-	-	-	-	-	-	-	-		-	1	1
CO5	2	2	-	-	-	-	-	-	-			-	-	-

CO-PO MAPPING:

SYLLABUS:

UNIT I PROBABILITY

Probability – Axioms of probability – Conditional probability – Total probability – Baye's Theorem – Discrete and continuous random variable

UNIT II TESTING OF HYPOTHESIS

Large sample test for single mean and difference of means – Small sample test: t distribution – Chi square distribution – F distribution

UNIT III DESIGN OF EXPERIMENTS

One way and two way classifications – Completely randomized design – Randomized block Design – Latin square design

9

9

9

9

9

UNIT IV SYSTEM OF EQUATIONS

Newton Raphson method – Gauss elimination method – Gauss Jordon method – Iterative methods of Gauss Jacobi and Gauss Seidel

UNIT V NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Taylor's series method – Euler method – Modified Euler method – Fourth order Runge kutta method for solving first order differential equations

Contact Periods:

Lecture: 4	5 Periods	Tutorial: - Periods	Practical: – Periods	Project - Periods
				Total: 45 Periods

TEXT BOOKS:

- Johnson R A, Miller I, Freund J, Miller and Freund's," Probability and Statistics for Engineers", 8th edition, Pearson Education, Asia, 2015.
- 2. Grewell B S, "Numerical methods in Science and Engineering", 9th edition Khanna Publishers, 2015.
- Gupta S C and Kapoor V K, "Fundamentals of Mathematical Statistics", 10th edition, Sultan Chand Publishers, 2014.

REFERENCES:

1. Bali N P and Manish Goyal "A textbook of Engineering Mathematics", 12th edition, Laxmi Publishers, 2016.

	Contin	uous internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar			End Semester
Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	Тс	otal	-	40	60
				10	0

EVALUATION PATTERN:

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

SEM	NES	TEF	VIS
-----	-----	-----	-----

REFI

Centre for Academic

nstit

	SEMESTER IV	I HOL	COU	rses	* 160	am Beyo
U21ME401		*	Cate	gory	PCC	;
	MANUFACTURING TECHNOLOGY - II	L	T	P	J	С
		3	0	0	0	3

PRE-REQUISITES:

U21ME302 - Manufacturing Technology - I

COURSE OBJECTIVES:

- To impart knowledge on the basic concepts of metal cutting
- To make the students understand the working principles of lathe, shaping and allied machines milling, drilling, grinding, and broaching
- To impart the knowledge on Computer Numerical Control (CNC) of machine tools and CNC Programming

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss on metal cutting principles (Apply)

- CO2: Impart the knowledge on the parts of the lathe, shaping, milling, drilling, and broaching (Understand)
- CO3: Illustrate and explain the concept of finishing operations and gear manufacturing process (Understand)

CO4: Develop programs related to manufacturing using codes (Understand)

CO5: Explain the concept of various unconventional and special machining processes (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	-	2	-	-	-	-	-	-	-	-	-	3	-
CO3	3	-	2			-	-	-	-	-	-	-	3	i.
CO4	3	-	-	-	3		-	-	-	-	-	-	3	-
CO5	3	-	-	-	3	(-	-	-	2	-	-	3	-

SYLLABUS:

UNITI THEORY OF METAL CUTTING (CONTACT CUTTING)

9

9

9

Mechanics of machining - Tools (materials - Temperature - Wear and life considerations) - Tool geometry - Single point and multi point cutting tool - Chip formation - Surface finish and machinability - Optimization - Merchant circle diagram of forces on cutting tool (simple problems only)

UNIT II MACHINES TOOLS - I

Introduction to Lathe - Automatic & Semi - Automatic Lathe - Vertical Turret Lathe - Shaper -Planning - Milling - Drilling - Boring - Working Principles - Operations - Economics of machining processes - Lathe- Milling and Drilling - Working Holding Devices - Jig and fixtures

UNIT III MACHINES TOOLS - II

Broaching - Types of Grinding and Grinding Machines - Grinding wheel Specifications - Honing -Lapping - Burnishing - Super Finishing - Gear Manufacturing Processes - Gear cutting - Gear

-lead of the Department Mechanical Engineering, 22/01/24 KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

69

Hobbing – Gear Shaping Machines – Manufacture of Spur – Helical – Bevel – Worm and Worm Wheel – Sand blasting

UNIT IV CNC MACHINES

Introductory concepts of CAD – CAM and CIM – Numerical Control (NC) machine tools – Direct Numerical Control (DNC) – Computer Numerical Control (CNC) machine tools – CNC types – constructional details – Special features – Machining center – Turning centre – Milling centre – CNC part programming fundamentals

UNIT V UNCONVENTIONAL AND SPECIAL MACHINING METHODS

Electro – Chemical – Electro Discharge – Ultrasonic – Laser – Electron Beam and Water Jet machining – Introduction to additive manufacturing – Need – Evolution – Fundamentals and trends in micro and nano technologies – Thermal cutting methods

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
Loota o.					Total	45 Periods

TEXT BOOKS:

- 1. Hajra Choudhury "Elements of Workshop Technology" Vol.II. 15th edition, Media Promoters, 2014.
- 2. Rao. P.N "Manufacturing Technology Metal Cutting and Machine Tools", 3rd edition, Tata McGraw Hill, New Delhi, 2013.

REFERENCES:

- Kapakjian.S and Schmid. S.R., Manufacturing Engineering and Technology, 6th edition, Pearson Education (Singapore) Pvt. Ltd., 2010.
- Khanna. O.P. & Lal.M, A Text book of Production Technology, 1st edition, Dhanpat Rai Publications, New Delhi, 2009.
- Kundra, T.K., Rao, P.N., and Tiwari, N.L.K., Numerical Control and Computer Aided Manufacturing, 2nd reprint, Tata McGraw Hill,2006.

EVALUATION PATTERN:

	Continue	ous Internal Ass		-		
Assessment I (100 Marks)		Assessme (100 Mar			End Semester Examinations	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments		
40	60	40	60	200	100	
	То	otal	40 60			
			100			

Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER IV

U21ME402	
	L

THEORY OF MACHINES

Centre for Academic Courses Câtegory-PCC L T P J C 3 0 2 0 4

neering

PRE-REQUISITES:

- U21MEG01 Engineering Graphics
- U21ME201 Engineering Mechanics

COURSE OBJECTIVES:

- To design the linkages and cam for specified output motions and to determine the speeds of gear trains.
- To impart knowledge on force-motion relationship in machine components and balancing forces in dynamic systems.
- To gain knowledge on mechanism for control and vibration in mechanical systems.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Perceive the concept mechanisms and to determine the velocity and acceleration of mechanisms (Apply)
- CO2: Construct various plate cam profiles and calculate the velocity ratio of gear trains (Apply)
- CO3 Determine the dynamic forces acting on machine components and measure the degree of unbalance for mass systems (Apply)
- CO4: Demonstrate governors and gyroscopes with their applications (Apply)

CO5: Express relationships among the parameters in vibration (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2	-	1	-	(4)	-	1	1	-	1	2	-
CO2	3	3	2	-	1	-	-	-	1	1	-	1	2	-
CO3	3	3	2	-	1	-	•	-	1	1		1	2	-
CO4	3	3	2	-	1	-	-	-	1	1	-	1.	2	-
CO5	3	3	2	-	1	-		-	1	1	-	1	2	-

SYLLABUS:

UNIT I BASICS OF MECHANISMS AND KINEMATICS OF LINKAGE MECHANISMS

9

Classification of mechanisms – Kinematic concepts and definitions – Degree of freedom – Mobility – Kutzbach criterion – Gruebler's criterion – Grashof's Law – Kinematic inversions of four – Bar chain and slider crank chains – Straight line generators – Universal Joint – Geneva mechanism – Ratchet and Pawl mechanisms and robot gripper mechanisms – Displacement – Velocity and acceleration analysis of simple mechanisms – Graphical method – Demonstration of linkage mechanism using MATLAB software

UNIT II KINEMATICS OF CAM MECHANISMS, GEARS AND GEAR TRAINS

Classification of cams and followers – Terminology and definitions – Displacement diagrams – Uniform velocity – Parabolic – Simple harmonic and cycloidal motions – Derivatives of follower motions – Layout of plate cam profiles – Spur Gear terminology and definitions – Law of toothed gearing – Gear trains

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

70

a

9

- Speed ratio - Train value - Parallel axis gear trains - Epicyclic Gear Trains - velocity ratio of epicyclic gear trains by tabular method.

FORCE ANALYSIS AND BALANCING UNIT III

Dynamic force analysis - Inertia force and Inertia torque - Dalembert's principle - Dynamic Analysis in reciprocating engines - Gas forces - Inertia effect of connecting rod - Bearing loads - Crank shaft -Static and dynamic balancing - Balancing of rotating masses.

MECHANISMS FOR CONTROL UNIT IV

Governors - Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors - Characteristics - Effect of friction - Controlling force curves - Gyroscopes - Gyroscopic forces and torques - Gyroscopic stabilization - Gyroscopic effects in Automobiles, ships and airplanes

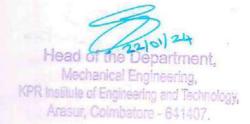
VIBRATION UNIT V

Basic features of vibratory systems - Degrees of freedom - single degree of freedom - Free vibration - Equations of motion - Natural frequency - Types of Damping - Damped vibration-Torsional vibration of shaft - Critical speeds of shafts - Forced Vibration - Harmonic disturbances - Vibration isolation

LIST OF EXPERIMENTS

- 1. Study of Four bar, Slider-crank and Double rocker mechanisms
- 2. Dynamic Analysis of Cam mechanism Determination of cam profile and jump speed
- Kinematics of Gear Trains Simple, Compound and Epicyclic Gear Trains- Determinations of 3. velocity ratio and torque
- Balancing of Rotating masses and Balancing of Reciprocating masses
- Experiment on Motorized gyroscope Comparison of theoretical and experimental precessional 5. velocity
- Universal Governors (Watt, Porter, Proell and Hartnell) Determination of centrifugal force and 6. equilibrium speed
- 7. Whirling of Shaft and Compound Pendulum Determination of natural frequency
- Two rotor system Comparison of theoretical and experimental torsional frequency
- Vibrating Table Determination of transmissibility ratio
- 10 Modelling of vehicle dynamics using MATLAB and Simulink

Contact Periods:


Lecture:	45 Periods	Tutorial: - Periods	Tutorial: - Periods Practical: 30 Periods		 Periods
			*	Total	75 Periods

TEXT BOOKS:

- 1. Rattan, S.S. "Theory of Machines", 4th edition, Tata McGraw-Hill, 2014.
- Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 4th edition, 2. Oxford University Press, 2018.

REFERENCES:

- 1. Ghosh.A and Mallick A.K. "Theory of Mechanisms and Machines", 3rd edition Affiliated East West Pvt. Ltd., New Delhi,2017
- Khurmi, R.S.," Theory of Machines", 14th edition, S Chand Publications, 2017. 2
- 3. Robert L.Norton, "Kinematics and Dynamics of Machinery", 3rd edition Tata McGraw-Hill, 2015.

9

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments		End Semeste	er Examinations			
Assessm (Theor (100 Mar	y)	Assessment (Practical) (100 Marks)		Theory	Practical			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted for 100 Marks)			
40	60	75	25		- A			
25		25		35	15			
	5	0		50				
		Tota	al: 100					

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

SEMESTER IV

		Toim	Cate	gory	PCC	
	THERMAL ENGINEERING	L	Т	P	J	С
U21ME403	THERMAE ENGINEER INTO	2	0	2	0	3

PRE-REQUISITES:

U21ME301 - Engineering thermodynamics

COURSE OBJECTIVES:

- To gain knowledge on applying thermodynamic concepts to thermal engineering systems
- To perform performance calculations for a variety of thermal applications
- To provide skill-based learning through hands on experiments

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Evaluate the performance of gas power systems (Analyze)

CO2: Apply thermodynamic principles in the Vapour power systems (Apply)

CO3: Analyze the flow through nozzles and turbines (Analyze)

CO4: Estimate the various efficiencies of compressors (Apply)

CO5: Investigate the performance of Refrigeration and air conditioning systems (Analyze)

CO-PO MAPPING:

POS	P01	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
C01	3	2	1	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	1	-	-	2	-	-	-	-	-	-	1	-
CO3	3	2	1	-	-	-	-	-	1 - 1	-	-		-	-
CO4	3	2	1	-	-	-	-	-		-	-	-	1	-
CO5	3	2	1	-	-	-	1.2	-	-	-	-	-	-	· -

SYLLABUS:

UNIT I GAS POWER SYSTEMS

Overview of Internal Combustion Engines – Engine Terminologies – Air standard analysis – Otto cycle –Diesel cycle –Dual cycle – Saving Fuel and Money by Driving Sensibly – Gas Turbine Power Plants – Air-Standard Brayton Cycle analysis – Regenerative Gas Turbines with Reheat and Intercooling

UNIT II VAPOUR AND COMBINED POWER SYSTEMS

Modeling of Vapour Power Systems Steam power plant – Analyzing of Rankine Cycle – Improving Performance – Superheat and Reheat Regenerative Steam power Cycle – Cogeneration – Combined Gas – Vapour Power Cycles Binary Vapour Cycles

UNIT III STEAM NOZZLES AND TURBINES

Types of steam Nozzles – Isentropic flow through nozzles – Flow through actual nozzles – Supersaturated expansion in nozzles – Working principle of turbines – Classification of turbines – Combined velocity triangle diagram – Compounding of turbines – Governing of steam turbines

6

6

UNIT IV AIR COMPRESSOR

Uses of compressed air – Classification – Compressor terminologies and efficiencies – Working principle of compressors – Indicated compression work with and without clearance volume – Multistage air compressor working and inter cooling

UNIT V REFRIGERATION AND AIR CONDITIONING

Ideal and actual Vapour – Compression Refrigeration Cycle – Selection of the Right Refrigerant – Absorption Refrigeration Systems – Applications of air conditioning – Air conditioning cycle – Central air conditioning systems – Cooling heat load calculations

LIST OF EXPERIMENTS

- 1. Performance Test on 4-stroke Diesel Engine
- 2. Heat Balance Test on 4-stroke Diesel Engine
- 3. Retardation Test to find Frictional Power of a Diesel Engine
- 4. Determination of COP of a refrigeration system
- 5. Performance analysis of Air conditioning system
- 6. Performance test on single/two stage reciprocating air compressor
- 7. Performance and Energy Balance Test on a Steam Generator
- 8. Performance and Energy Balance Test on Steam Turbine

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical:	30 Periods	Project	- Periods
					Total	60 Periods

TEXT BOOKS:

1. Mahesh M Rathore, "Thermal Engineering", 5th edition, McGraw Hill Education, New Delhi, 2016

 Yunus E. Cengel Michael A.Boles, "Thermodynamics – An engineering approach", 9th edition, McGraw Hill Education, New Delhi, 2019

REFERENCES:

1. Rajput. R. K., "Thermal Engineering" 11th edition, Laxmi publications, New Delhi, 2020

2. Arora.C.P. "Refrigeration and Air Conditioning" 3rd edition McGraw Hill Education, 2019

3. Ganesan V., "Internal Combustion Engines", 4th edition, Mcgraw Hill Education, 2014

4. Rudramoorthy R., "Thermal Engineering", 3rd edition, McGraw Hill Education, New Delhi, 2016

20 Hea

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

74

6

ĉ

4

17

٦

EVALUATION PATTERN:

Contin	uous Interi	nal Assessments		End Semester	Examinations		
Assessme (Theory (100 Mar	()	Assessment (Practical) (100 Marks)		Theory Examinations	Practical Examinations		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	(Examinations will be conducted for 100 Marks)	(Examinations will be conducted for 100 Marks)		
40	60	75					
25		25		25	25		
	5	0	-	e e	50		
		Tota	al: 100	12/			

SEMESTER IV

			Cate	gory:	PCC	
U21ME404	SENSORS AND TRANSDUCERS	L	Т	Ρ	J	С
		2	0	0	2	3

PRE-REQUISITES:

- U21PH101 Engineering physics
- U21EEG02 Basics of Electrical Engineering

COURSE OBJECTIVES:

- · To make student familiar with the concepts of measurement technology
- To make student aware about the various sensors used to measure various physical parameters
- To learn the fundamentals of signal conditioning, data acquisition and communication systems used in mechatronics system development

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Classify various performance characteristics of sensors and transducers and calibration techniques for sensors (Understand)
- CO2: Apply the principles of sensors in the Automotive and Mechatronics applications (Apply)
- CO3: Apply the principles of various sensors in measurement of physical parameters in machine tools and other systems (Apply)
- CO4: Locate the basic principles of various smart sensors and its applications (Understand)

CO5: Implement the DAQ systems with different sensors for real time applications (Understand)

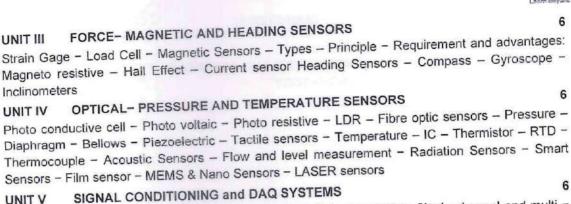
CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	-	-	-	3	-	-	-	-	-	-	-	2	-
CO2	3	-	-	-	3	-	-	-	-	÷	-	-	3	-
CO3	3	-	-	-	3	-	-	-	-		-	-	3	-
CO4	3	-	-	-	3	<i></i>	-	-	-		-	-	3	-
CO5	3		-	2	2	-		-	-	-	-		2	

SYLLABUS:

UNIT I INTRODUCTION

Basics of Measurement – Classification of errors – Error analysis – Static and dynamic characteristics of transducers – Performance measures of sensors – Classification of sensors – Sensor calibration techniques – Sensor Output Signal Types


UNIT II MOTION- PROXIMITY AND RANGING SENSORS

Motion Sensors – Potentiometers- Resolver- Encoders – Optical- Magnetic- Inductive – Capacitive – LVDT – RVDT – Synchro – Microsyn – Accelerometer – GPS – Bluetooth – Range Sensors – RF beacons – Ultrasonic Ranging – Reflective beacons – Laser Range Sensor (LIDAR)

76

6

UNIT V Amplification - Filtering - Sample and Hold circuits - Data Acquisition: Single channel and multi -Channel data acquisition - Data logging - Applications - Automobile - Aerospace - Home appliances - Manufacturing - Environmental monitoring

J component

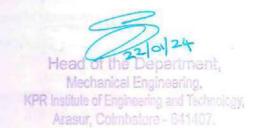
UNIT IV

1. Application in Proximity -force-magnetic-optical-pressure-temperature sensors and signal conditioning -case study/project

Contact Periods:

Lecture:	30 Periods	Tutorial:	- Periods	Practical:	 Periods 	Project	30 Periods
Lecture.	501 Chodo					Total	60 Periods

TEXT BOOKS:


- 1. Ernest O Doebelin. "Measurement Systems Applications and Design", 4th edition, Tata McGraw Hill,
- 2. Sawney A K and Puneet Sawney. "A Course in Mechanical Measurements and Instrumentation and Control", 12th edition, Dhanpat Rai & Co New Delhi, 2013

REFERENCES:

- 1. Patranabis D. "Sensors and Transducers", 2nd edition, PHI, New Delhi, 2010
- 2. B.C, "Automatic control systems", 7th edition Prentice Hall India, New Delhi, 2007
- 3. Mujumdar.S.R "Sensors and its application System", Tata McGraw Hill 2006

EVALUATION PATTERN:

Conti	nuous Inte	ernal Asse	ssments	1 L	End Semester Examinations			
Assessment I (100 Mar			ssessmen (Project) 100 Marks		Theory Examinations			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Review I	Review II	Review III	(Examinations will be conducted for 100 Marks)			
40	60	15	25	60				
25			a started	50				
		50	50					
	13	1.20	Tota	l: 100				

SEMESTER IV

			Cate	gory	: PCC	:
U21ME405	COMPUTER AIDED MODELLING AND ASSEMBLY LABORATORY	L	Τ	Ρ	J	С
		0	0	4	0	2

PRE-REQUISITES.

Nil .

COURSE OBJECTIVES:

- To impart fundamental knowledge and basic skills to the students in drafting and modelling techniques
- To make the students understand and interpret drawings of machine components
- To develop skills on creating 2D and 3D models using modelling packages .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- To draw orthographic projections of simple components using geometric modeling software CO1: (Apply)
- To create three-dimensional assembly models of automotive and machine components using CO2: CAD software (Apply) CO3:
- To generate 3D assembly models of machine elements using CAD software (Apply)
- To develop three-dimensional model of simple mechanism and animation using CAD CO4: software (Apply)

CO5: To prepare the technical documents for the given components using software (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	-	2	3	-	3	-	-	-	2	3	3	-	3	-
CO2	-	2	3	-	3	-	-	-	2	3	3	-	3	2.0
CO3	-	2	3	-	3	-	-	-	2	3	3	-	3	-
CO4	-	2	3	-	3		-	-	2	3	3	-	3	-
CO5	-	2	3	-	3		-	-	2	3	3	-	3	-

LIST OF EXPERIMENTS

- 1. Create an orthographic view of the machine components for the given isometric drawings
- 2. Construct a three-dimensional modelling and assembly of bearing
- 3. Create a three-dimensional modelling and assembly of simple mechanism and animate its working using modelling software
- 4. Generate a three-dimensional modelling and assembly of shaft and coupling using tolerance
- 5. Create a three-dimensional modelling and assembly of piston and connecting rod
- 6. Create a three-dimensional modelling and assembly of tailstock of lathe
- 7. Create a three-dimensional modelling and assembly of tool head of shaper
- 8. Create a three-dimensional modelling and assembly of two-wheeler suspension system

0124 Head of the Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

9. Construct a three-dimensional modelling and assembly of control valve

10. Generate a three-dimensional modelling and assembly of Jig/fixture

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 60 Periods	Project	- Periods
Lootaro. Forreste			Total	60 Periods

REFERENCES:

- 1. Geometric Modelling: Theoretical and Computational Basis towards Advanced CAD Applications Fumihiko Kimura
- 2. Creo Parametric 2.0 for Engineers and Designers Prof Sham Tickoo Prabhakar Singh

EVALUATION PATTERN:

Continuous Internal Assessm	ents	
Evaluation of Laboratory Observation- Record (Rubrics Based Assessments)	Test	End Semester Examinations
75	25	
100	ada per-kasin si	100
60		40
	100	

barlment, Head of the Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

3.E. – ME – R	2021 – CBCS	Aca	tre fo dem urse	ic]		PRIE
	SEMESTER IV		abato	15	/ 6	um Beyo
			Cate	egory	: PCC	;
U21ME406	MANUFACTURING TECHNOLOGY LABORATORY - II	L	т	Р	J	С
	21 A	0	0	4	0	2

ngineerin

PRE-REQUISITES:

U21ME302 - Manufacturing Technology – I

COURSE OBJECTIVES:

- To acquire knowledge on various basic machining operations in special purpose machines
- To demonstrate the applications of special machining in real life manufacture of components
- To impart the knowledge on CNC machines

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Perform various milling operations (Apply)

- CO2: Use different machine tools to manufacturing gears (Apply)
- CO3: Conduct grinding operations for different surface conditions (Apply)
- CO4: Manufacture tools using cutter grinder (Apply)
- CO5: Develop CNC part program for performing turning and machining operation in CNC machine (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	-	-		-	-	-	1	2	2	-	-	2	-
CO2	3	-	-	-	-	-	-	1	2	2	~	-	2	-
CO3	3	-	-	-	π	-	-	1	2	2	-	-	2	-
CO4	3	-	-	2	3	-	-	1	2	2	-	-	2	-
CO5	3		-	-	3	-	-	1	2	2	Ŧ	-	2	-

LIST OF EXPERIMENTS

- 1. Contour milling using vertical milling machine
- 2. Spur gear / helical gear cutting in milling machine
- 3. Gear generation in hobbing machine / gear shaping machine
- 4. Keyway & spline cutting using Slotter / shaper
- 5. Plain Surface grinding & Cylindrical grinding
- 6. Tool angle grinding with tool and Cutter Grinder
- 7. Taper Turning and Threading using CNC Lathe
- 8. Drilling and grooving using CNC Lathe with canned cycle
- 9. Pocketing and Contour milling using CNC Milling Machine
- 10. Drilling and Tapping using CNC Milling Machine

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

. .

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical: 60 Periods	Project	- Perious	
Lecture Perious			Total	60 Periods	

TEXT BOOKS:

- 1. Hajra Choudhury, "Elements of Workshop Technology", Vol.II. 15th edition Media Promoters 2016
- 2. Rao. P.N "Manufacturing Technology Metal Cutting and Machine Tools", 3rd edition, Tata McGraw Hill, New Delhim, 2013

REFERENCES:

- Richerd R Kibbe: John E. Neely; Roland O. Merges and Warren J.White "Machine Tool Practices", 1. 2nd edition Prentice Hall of India,2004
- Kundra, T.K., Rao, P.N., and Tiwari, N.L.K., Numerical Control and Computer Aided Manufacturing, 3rd edition, Tata McGraw Hill,2006 2.
- Kapakjian.S and Schmid. S.R., Manufacturing Engineering and Technology, 6th edition, Pearson 3. Education (Singapore) Pvt. Ltd., 2010

EVALUATION PATTERN:

Continuous Internal Assessm	ients				
Evaluation of Laboratory Observation- Record (Rubrics Based Assessments)	Test	End Semester Examinations			
75	25				
100		100			
60		40			
	100				

sur, Combatore - 641407.

gineeri Centre for nstit Academic c. Courses Category: HSM 1 T P J C 0 0 2 0 1

SEMESTER IV

SOFT SKILLS - I

PRE-REQ	INCITEO.
PRE-REU	UISHES.

U21SSG01

Nil

COURSE OBJECTIVES:

- To inculcate potential skills and to work as a team effectively.
- To develop confidence and enhance interpersonal skills.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Enhance decision making and negotiation skills (Analyse)

CO2: Maintain open, effective, and Professional Communication (Apply)

CO-PO MAPPING:

POs Cos	P01	PO2	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	-		-	-		-	-	-	-	3	-	2	-	1
CO2	Ŧ	-	-	-	-	-	-	-	2	3	-	1	-	1

SYLLABUS:

UNIT I VERBAL COMPETENCE

Verbal Analogy – Spotting Errors – Ordering of Sentences – Cloze Test – Effective Listening – Reading Comprehension

UNIT II EFFECTIVE COMMUNICATION

Overcoming Communication Barriers – Body Language and its Etiquettes – Contextual Communication – 7C's of Communication – Listening to Documentaries

UNIT III INTERPERSONAL SKILLS

Group Decision Making – Paralanguage – Negotiation Skills – Preparation & Planning, Bargaining & Problem Solving – Self Grooming – SWOT Analysis

Contact Periods:

Lecture:	- Periods	Tutorial:	- Periods	Practical	30 Periods	Project	- Periods	
						Total	30 Periods	

TEXT BOOKS:

- 1. Prashant Sharma,"Soft Skills: Personality Development for Life Success",1st edition, BPB Publications,2022
- 2. Suresh Kumar E, Sreehari P and Savithri J, "Communication Skills and Soft Skills: An Integrated Approach", 1st edition, Dorling Kindersiey, 2011

10

10

REFERENCES:

1

ŝ

1

- 1. Jeff Butterfield, "Problem Solving and Decision Making", 2nd edition, Course Technology, 2010.
- 2. Wushow Bill Chou, "Fast-Tracking your Career: Soft Skills for Engineering and IT Professionals",
- 1st edition, IEEE Press, 2013.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks					
Test - I	50					
Test - II	50					
Total	100					

22-10124 mise Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

	10	Eng	ineer	ino		
1		Cen			V	0
in land	= 1	Acar	lemi	~ 1/	PRI	
1	AN. #C	Cou	rses	1002	int Bey	ind
	10	Cate	tore		2	1
	L	Т	P	1	C	1

SEMESTER V

U21ME501		Category: PCC								
	DESIGN OF MACHINE ELEMENTS	· L	Т	P	L	С				
		3	0	0	0	3				

PRE-REQUISITES:

U21ME305 – Mechanics of Solids

COURSE OBJECTIVES:

- · To familiarize the various steps involved in design of machine elements
- To understand the principle involved to satisfy functional and strength requirements.
- To learn to use standard practices and standard data

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply the concept of steady stresses to design machine elements (Apply)

CO2: Design shafts and couplings for various applications (Apply)

CO3: Select bearings for specific applications (Apply)

CO4: Design of energy storing springs and flywheel for specific applications (Apply)

CO5: Design temporary and permanent joints (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2	-	-	-	-		-	-	-	1	2	-
CO2	3	3	2	÷	-	-	-		-	-	-	1	2	-
CO3	3	3	2	-	-	-	-	-	-	-	14	1	2	-
CO4	3	3	2	-	-	-	-	-	-	-	-	1	2	÷
CO5	3	3	2	-	-	-	-	-	-	-	-	1	2	-

SYLLABUS:

UNIT I STRESSES IN MACHINE MEMBERS

9

9

9

9

Introduction to the design process – Factors influencing machine design – Selection of materials based on mechanical properties – Preferred numbers – Direct – Bending and Torsional stress – Impact and shock loading – Eccentric loading – Design of curved beams – Theories of failure

UNIT II DESIGN OF SHAFTS AND COUPLINGS

Design of shafts based on strength, rigidity and critical speed – Design of keys – Key ways and splines – Design of rigid and flexible couplings

UNIT III DESIGN OF BEARINGS

Sliding contact and rolling contract bearings – Design of hydrodynamics journal bearings – Selection of rolling contact bearings

UNIT IV DESIGN OF ENERGY STORING ELEMENTS

Design of springs: helical springs - Leaf springs - Design of flywheels considering stresses in rims and arms

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

DESIGN OF TEMPORARY AND PERMANENT JOINTS UNIT V

Threaded fasteners - Design of bolted joints including eccentric loading - Knuckle joints and Cotter joints - Design of welded joints - Design of riveted joints

Contact Periods:

	45 Periods	Tutorial'	Practical: - Periods	Project	- Periods
Lecture:	45 Perious	T dtoridi.		Total	45 Periods

TEXT BOOKS:

- 1. Bhandari V, "Design of Machine Elements", 4th edition, Tata McGraw-Hill Book Co, 2016.
- 2. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 9th edition, Tata McGraw-Hill, 2011.

REFERENCES:

- 1. Shigley J.E and MischkeC.R., "Mechanical Engineering Design", Tata McGraw-Hill , 2003.
- 2. Bhandari V.B, "Design of Machine Elements", Tata McGraw-Hill Book Co, 2007.
- 3. Sundararajamoorthy T. V, Shanmugam. N, "Machine Design", Anuradha Publications, Chennai, 2003.
- Orthwein W, "Machine Component Design", Jaico Publishing Co, 2003.
- 5. Ugural A.C, "Mechanical Design An Integral Approach", McGraw-Hill Book Co, 2004.

EVALUATION PATTERN:

	Contin	uous Internal Ass	sessments		
Assessment I (100 Marks)		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations
40	0 60 40			200	100
	Тс	otal	40	60	
					100

d of the Department,

SEMESTER V

U21ME502			Cate	gory	PCC	C
	FUNDAMENTALS OF AUTOMATION	L	Т	Р	J	С
		2	0	0	2	3

PRE-REQUISITES:

- U21EEG02 Basics of Electrical Engineering
- U21ECG04 Basics of Electronics Engineering
- U21ME404 Sensors and Transducers

COURSE OBJECTIVES:

- To understand the necessity of automation in industries
- To learn the drives and actuators used in an automation environment
- To apply the concepts of PLC and SCADA in industries

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify the different components of an automation system (Understand)

CO2: Illustrate hydraulic and pneumatic sequencing circuits (Understand)

CO3: Interface the given I/O device with an appropriate PLC module (Understand)

CO4: Solve problems related to PLC ladder Logic and SCADA (Apply)

CO5: Work as a group to develop a PLC/ SCADA application (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	2	-			-	-	-	-	-	-	-	3	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	3	-
CO4	3	3	3	3	3		-	-	-	-	-	-	3	-
CO5	3	3	3	3	2	-	-	-	3	-	π.	-	3	2

SYLLABUS:

UNIT I INTRODUCTION TO AUTOMATION

Needs and benefits of Industrial Automation – Automation Hierarchy – Basic Components of Automation System – Description of each component – Types of Automation System Fixed Programmable – Flexible – Different systems for Industrial Automation PMC – SCADA – HMI – DCS – Drives

UNIT II HYDRAULICS AND PNEUMATICS

Hydraulic Actuators: Types and Construction of Cylinders, Cushioning – Flow Control and Pressure Control Valves – Pneumatic Properties of Air – Perfect Gas Laws – Compressor – FRL Unit – Quick Exhaust Valves and Pneumatic Actuators – Electro Pneumatic Systems – Elements – Ladder Diagrams

of the Department Head Mechanical Engineering KPR Institute of Engineering and Technology, Arasur, Colmbatore - 841407

86

6

PLC FUNDAMENTALS UNIT III

Building Blocks of PLC: CPU, Memory organization, Input-output modules (discrete and analog), Special I/O Modules - Power Supply - Fixed and Modular PLC - their types - Redundancy in PLC modules. - I/) module selection criteria - Interfacing different I/O devices with appropriate I/O modules 6

PLC PROGRAMMING AND APPLICATIONS UNIT IV

PLC I/O addressing - PLC programming instructions: Relay type instructions: On delay off delay retentive - counter instructions - comparison instructions - Data handling Instructions - Arithmetic instructions - PLC programming language - Functional Block Diagram - Instruction List - Structured text - Sequential Function Chart - Ladder Programming - Simple Programming examples using ladder logic Language based on relay - timer counter - logical - comparison - arithmetic and data handling instructions - PLC based applications - Motor sequence control - Traffic light Control elevator control - conveyor system - Stepper motor control - reactor control

SUPERVISORY CONTROL AND DATA ACQUISITION SYSTEM UNIT V

Introduction to SCADA - typical SCADA architecture/ block diagram - benefits of SCADA - Various editors of SCADA - Interfacing SCADA system with PLC Typical connection diagram - Object linking and embedding for Process Control architecture - Steps in creating SCADA screen for simple object - Steps for linking SCADA object with PLC ladder program using OPC - Applications of SCADA: Traffic light control - water distribution - pipeline control

Contact Periods:

Lecture:	30 Periods	Tutorial:	- Periods	Practical:	- Periods	Project	30 Periods
						Total	60 Periods

J Component - Suggested projects:

One micro - project is planned to be undertaken by a student group that needs to be assigned to them in the beginning of the semester - In any case - the number of students in the group should not exceed four

The micro project could be industry application - based internet - based - workshop based laboratory based or field based - Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation on it before the submission - The total duration of the micro project should not be less than 30 hours during the course, the student ought to submit micro - project by the end of the semester

A suggested list of micro-projects is given here, similar micro-project could be added by the faculty member concerned:

- Automatic Street light controller: Prepare a PLC based system to control the street light as per a. the intensity of natural light
- Automatic agriculture irrigation system: Prepare a PLC based system to control drip irrigation b.
- Railway gate automation: Prepare a PLC and SCADA based system to open of close the C. prototype railway gate automatically
- Home automation: Implement the versatile automation system for home that can automate any d. three home appliances
- Bottle filling station: Prepare a PLC and SCADA based system for prototype bottle filling station e.
- Troubleshoot a Faulty Equipment/ Kit available related to automation in any laboratory f

TEXT BOOKS:

- 1. Frank D. Petruzella, "Programmable Logic Controllers". 5th edition, McGraw Hill, 2019
- Stuart A Boyer, "SCADA: Supervisory Control and Data Acquisition". 4th edition, International 2 Society of Automation, 2016

Aresur, Coimbatore - 641407.

87

REFERENCES:

- 1. Madhuchhanda Mitra, "Programmable Logic Controllers and Industrial Automation: An Introduction". Penram International Publishing, 2017
- 2. Jon Stenerson, "Industrial Automation and Process Control". Pearson, 2022
- 3. David Bailey, Edwin Wright, "Practical SCADA for Industry". Elsevier, 2003

EVALUATION PATTERN:

Cont	inuous Int	ernal Asse	essments		End Semester Examinations
Assessment I (100 Mar	0505	ssessmen (Project) (100 Marks			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Review I	Review Review II III		Theory Examinations (Examinations will be conducted for 100 Marks)
40	60	15	25	60	
25		50			
		50			
			Total	: 100	

Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Atusur, Colmbatore - 841407.

ofEngineening	
Centre for	ap
Courses	KPRIET Learn Beyond
* Coi *	

SEMESTER V

U21ME503		nba	Cate	gory	: PC	С
	ENGINEERING METROLOGY AND MEASUREMENTS	L	Т	Ρ	J	С
OF HILLOOD		2	0	2	0	3

PRE-REQUISITES:

Nil .

COURSE OBJECTIVE:

- Important knowledge on the basic principles of measurements
- To provide knowledge on various metrological equipments
- To provide knowledge on the correct procedure to be adopted to measure the components .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss the basic principles of measurements and its parameters (Apply)

CO2: Select appropriate measuring device for measuring physical (Apply)

CO3: Apply form measurement tools for engineering applications (Apply)

CO4: Explain the various types of optical measurement system (Apply)

CO5: Explain the working of advanced measuring equipments and its applications (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	2	-	1	-	-	-	-	-	-	-	-	•
CO2 .	3	2	2	-	2	-	-	-	-	-	-	- 	2	-
СОЗ	3	2	2	-	2	-	-	-	-	-	-	-	2	-
CO4	3	2	2	-	2	-	-	-		-	-	-	2	1
CO5	3	2	2	+	2	-	-			-	-		2	-

SYLLABUS:

FUNDAMENTALS OF MEASUREMENT UNITI

Elements of a generalized measurement system - Standards and types of signals - Static and dynamic performance characteristics - Instrument types Principles of calibration - Calibration of Instruments Types of error limits fits tolerances and G&DT symbols

MEASUREMENT OF PHYSICAL VARIABLES UNIT II

Linear and angular displacement - Velocity - Force - Torgue - Strain - Pressure Flow rate and temperature; Transfer functions of some standard measuring devices - Comparators - Types of comparators

FORM AND FINISH MEASUREMENT UNIT III

Measurement of surface finish - Inspection of straightness - Flatness and alignment - Gear testing digital read outs - Interferometry - Laser Interferometers

OPTICAL MEASUREMENT UNIT IV

Special Measuring Equipments - Principels of measurements using Tool Maker's microscope profile projector, Coordinate measuring machine Optical microscopy - Scanning Electron Microscope -Atomic Force microscopy - Transmission Electron Microscopy

22/01/24 Head of the Department, KPR Institute of Engineering and Technology,

7

6

5

6

UNIT V ADVANCES IN METROLOGY

Machine vision system – Non – Contact type measurements – Acoustics – Ultrasonic – Radiation thermal and capacitance-based measurement – Principles of measurement system analysis

LIST OF EXPERIMENTS

- 1. Study on basic measuring instruments Vernier caliper, micrometer, Vernier height gauge, Digital height gauge bevel protractor, sine bar
- 2. Non-contact (Optical) measurement using Profile Projector
- 3. Measurement of gear parameters using Gear tooth vernier
- 4. Measurement of dimensions using floating gauge Micrometer
- 5. Measurement of Surface Finish Measurement using surface roughness tester
- 6. Measurement of dimensions using Coordinate Measuring Machine (CMM)
- 7. Measurement of force, torque and temperature
- 8. Measurement of linear dimensions using Comparators

Contact Periods:

Lecture:	30 Periods	Tutorial: - Periods	Practical:	30 Periods	Project	- Periods
					Total	60 Periods
			14			

TEXT BOOKS:

- 1. Jain R.K."Engineering Metrology", 20th edition Khanna Publishers, 2009
- 2. Gupta. I.C., "Engineering Metrology", 5th edition Dhanpatrai Publications, 2005

REFERENCES:

- 1. Beckwith, Marangoni, Lienhard, "Mechanical Measurements", Pearson Education, 2014
- 2. Raghavendra, Krishnamurthy"Engineering Metrology & Measurements", Oxford Univ. Press, 2013
- 3. Eckman Donald PEckman, "Industrial Instrumentation", Wiley Eastern Limited, 2019

EVALUATION PATTERN:

Contin	uous Inter	nal Assessments		End Semester	Examinations		
Assessme (Theory (100 Mar	()	Assessment (Practical) (100 Marks)	1	Theory	Practical		
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Examinations (Examinations will be conducted fo 100 Marks)		
40	60	75 25					
25		25		25	25		
× .	5	0	50				
		Tota	l: 100		*		

22101/24

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMEST	TER V
--------	-------

	Category: PCC						
	MECHATRONICS LABORATORY	L	Т	Р	J	С	
U21ME504		0	0	4	0	2	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To design and simulate the pneumatic and hydraulic circuits
- To develop the programming skills using microprocessors and microcontrollers
- To execute automatic control using PLC and implement the concept of mechatronics

COURSE OUTCOMES:

Upon completion of the course, the student will be able to Apply

CO1: Experiment with the various design concepts involved in pneumatics and hydraulics (Apply)

CO2: Build basic automation control circuits using Electro Pneumatics and PLC (Apply)

CO3: Demonstrate various programs using microprocessor and microcontroller (Apply)

CO4: Outline the applications of image processing techniques in automation (Apply)

CO5: Design and develop automation modules using electronic controllers- PLC- suitable sensors and actuators (Apply)

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2
C01	3	2	2	-	3	-	-	-	2	1	-	3	3	-
CO2	3	2	2	-	3	-	-	-	2	1	-	3	3	-
CO3	3	-	-	-	2	-	-	-	2	1	-	3	2	-
CO4	1	1	1	-	1	-	-	-	2	1	-	3	1	-
C04	3	3	3	3	3	-	-	-	2	1	-	3	3	-

CO-PO MAPPING:

LIST OF EXPERIMENTS

- 1. Operation of Meter-In & Meter-Out Circuits
- Sequencing of Two Double Acting Cylinders (A+B+A-B-)
- 3. Cascading of Three Double Acting Cylinders (A+B+C+C-B-A-)
- 4. Operation of a Double Acting Cylinder Using SR and SS Valve
- 5. Single Cycle Automation and Multi cycle Automation of a Double Acting Cylinder
- 6. Multi cycle Automation Using Logo Soft PLC
- 7. Sequencing of Two Double Acting Cylinders Using Logo Soft PLC (A+B+A-B-)
- Assembly Language Programming of 8085 for addition and subtraction.
- 9. Stepper Motor Interfacing with 8051 Microcontroller Clockwise and Anti clockwise Rotation
- 10. Study: Image Processing hardware and software

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

- 11. Study: Hydraulic components and circuits
- 12. Study: Traffic Light Interface
- 13. Door opening and closing circuits

Contact Periods:

Lecture: - Periods Tutorial: - Periods

Practical: 30 Periods

Total 30 Periods

- Periods

Project

REFERENCES:

- 1. Bolton- "Mechatronics" Printice Hall 2018
- Ramesh S Gaonkar
 – "Microprocessor Architecture
 – Programming
 – and Applications with the
 8085" 5th edition
 – Prentice Hall
 – 2018
- 3. Krishna Kant- "Microprocessors & Microcontrollers" Prentice Hall of India- 2013
- 4. Clarence W- de Silva- "Mechatronics" CRC Press-First Indian Re-print- 2019

EVALUATION PATTERN:

Continuous Internal Assessm	nents	
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	End Semester Examinations	
75	25	
100		100
40	60	
	100	

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER V

	the second s	Category: HSM							
U21SSG02	SOFT SKILLS - II	L	Т	P	J	C			
U2155G02	SOL TOTALLO II	0	0	2	0	1			

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the importance of communication and enhance self confidence
- To acquire employability skills

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Actively participate in Group Discussion (Analyze)

CO2: Enhance interview skills and make effective Presentation (Apply)

CO-PO MAPPING:

POs Cos	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	2	3	-	-	-	1
CO2	-	-	-	-	-	-	-	-	2	3	-	-	-	1

SYLLABUS:

UNIT I PRESENTATION SKILLS

Presentation Techniques – Time Management Techniques – Body language – Managerial Skills – Making Effective Presentation

UNIT II GROUP DISCUSSION AND PUBLIC SPEAKING

Introduction to Group Discussion – Understanding Group Dynamics – Group Discussion Strategies– Activities to Improve GD Skills – Public Speaking Techniques – Public Speaking Activiti

UNIT III INTERVIEW SKILLS

Listening to Interviews – Preparation for the Interview – Interview Techniques and Etiquettes – Handling Stress Interview – Mock Interview – Online Interview Techniques

Contact Periods:

Lecture:	-Periods	Tutorial:	-Periods	Practical: 30 Periods	Project	- Periods	
					Total	30 Periods	

TEXT BOOKS:

- 1. Prashant Sharma, "Soft Skills: Personality Development for Life Success", 1st edition, BPB Publications,2022
- Leader Interpersonal and Influence Skills: The Soft Skills of Leadership." Routledge Publications, 2014.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

10

10

REFERENCES:

- Ghosh B N, "Managing Soft Skills for Personality Development", 1st edition, Tata McGraw Hill, 2012.
- Nitin Bhatnagar and Mamta Bhatnagar, "Effective Communication and Soft Skills Strategies for Success", 1st edition, Pearson Education, 2012.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks
Test - I	50
Test - II	50
Total	100

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

SEMESTER VI

U21ME601			Cate	jory	PCO	0	
	FINITE ELEMENT ANALYSIS	LTPJ					
		3	0	0	0	3	

PRE-REQUISITES:

- U21ME305 Mechanics of Solids
- U21MA404 Statistics and Numerical Methods

COURSE OBJECTIVES:

- To introduce the concept of Mathematical Modelling for engineering problems
- To appreciate the use of FEM to a range of variable problems
- To impart the applications of FEM in heat transfer and fluid mechanics problems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to Apply

- CO1: Solve a mathematical model using the concepts of weighted residuals and boundary value problems. (Apply)
- CO2: Apply the basic finite element equations for one dimensional structural and vibrational problems (Analyze)

CO3: Formulate the finite element equations for two dimensional elements scalar problems (Analyze)

CO4: Interpret the finite element equations for 2D plane stress, plane strain and axisymmetric problems (Analyze)

CO5: Solve 1D & 2D heat transfer, fluid mechanics and iso parametric element problems (Analyze) CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	12	-	-	-	3	-
CO2	3	3	1	+	-	-	-	-	-	-	-	-	3	-
CO3	3	3	1	-	-	-	1.1-1-1	-	-		-	-	3	-
CO4	3	3	1	-	- 1	-	-	-	-	-	-	-	3	-
CO5	3	3	1	-	-	-	-	-	-	-	-	:+	3	-

SYLLABUS:

UNIT I INTRODUCTION TO FEA

9

Historical background – Mathematical modelling of field problems in engineering – Governing equations – Discrete and continuous models – Introduction to boundary, initial and eigen value problems – Weighted residual methods – Variational formulation of boundary value problems – Ritz technique – Basic concepts of the FEM

Head of the Department, Mechanical Engineering, R Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

9

9

9

UNIT II ONE DIMENSIONAL FINITE ELEMENT ANALYSIS

One Dimensional second order equations – Discretization – Element types – Linear and higher order elements – Shape functions – Stiffness matrices and force vectors – Assembly of matrices – Solution of problems from solid mechanics Vibrational problems – Equations of motion based on weak form – Longitudinal vibration of bars –Transverse vibration of beams – Consistent mass matrices – Element equations – Solution of eigen value problems – Vector iteration methods – Normal modes – Transient vibrations

UNIT III TWO – DIMENSIONAL SCALAR VARIABLE PROBLEMS

Second order 2D equations involving scalar variable functions – Variational formulation – Finite element formulation – Triangular elements – Shape functions, element matrices and vectors. Application to field problems – Thermal problems – Quadrilateral elements

UNIT IV TWO – DIMENSIONAL VECTOR VARIABLE PROBLEMS

Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Body forces & temperature effects – Stress calculations

UNIT V APPLICATIONS OF HEAT TRANSFER & FLUID MECHANICS USING FEA

One dimensional heat transfer element – Application to one–dimensional heat transfer problems – scalar variable problems in 2D – Applications to heat transfer in 2D – Application of problems in fluid mechanics in 2D Introduction to Iso – Parametric formulation

Contact Periods:

Lecture:	45 Periods	Tutorial:	 Periods 	Practical: - Periods	Project	- Periods
	3				Total	45 Periods

TEXT BOOKS:

- 1. Reddy.J.N., "An Introduction to the Finite Element Method", 3rd edition, Tata McGraw-Hill, 2016
- Seshu, P, "Text Book of Finite Element Analysis", Prentice Hall of India Pvt.Ltd., New Delhi, 2017.

REFERENCES:

- 1. Rao, S.S., "The Finite Element Method in Engineering", 3rd edition, Butter worth Heinemann, 2018.
- Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd edition, Prentice Hall College Div, 2019
- Cook, Robert.D., Plesha, Michael.E & Witt, Robert.J. "Concepts and Applications of Finite Element Analysis", Wiley Student Edition, 2012. ISBN-1081-265-1336-5

٦

EVALUATION PATTERN:

e sono cro

14.2

	Contin	uous Internal As	sessments	5	<u></u>		
Assessme (100 Mark		Assessme (100 Mar		- Total Internal	End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200	100		
			Service States	40	60		
	То	otal	1	00			

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

SEMESTER VI	
-------------	--

neerin

Centre for

Academic

U21ME602		Category: PCC							
	DESIGN OF TRANSMISSION SYSTEM	L	Т	Ρ	J	С			
		3	0	0	0	3			

PRE-REQUISITES:

U21ME501 - Design of Machine Elements

COURSE OBJECTIVES:

- To impart knowledge on the various components of a transmission system
- To develop skillset on designing gears and gear boxes
- To build design skills in developing a workable model based on design principles

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

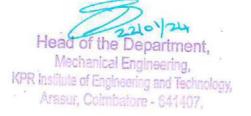
- CO1: Design the flexible transmission elements (Apply)
- CO2: Develop spur and helical gears for the given specification (Apply)
- CO3: Analyze worm and bevel gears for the given problems (Apply)
- CO4: Design various types of gears and gear boxes (Apply)
- CO5: Investigate clutches and brakes for the given problems (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	3	3	1	-	- ,	-		-	-	-	-	3	-
CO2	3	3	3	1	-	-	-	-	-	-	-	-	3	-
CO3	3	3	3	1	-	-	-	-	-	-	-	-	3	-
CO4	3	3	3	1	-	-	-	-	-	-	-	-	3	-
CO5	3	3	3	1	-	-		-	(#)	-	-	-	3	-

SYLLABUS:

UNIT I FLEXIBLE TRANSMISSION ELEMENTS


Introduction to transmission systems – Factors – Materials selection – Stresses – Belt & chain drives – Design of flat and V – Belts – Design of chain drives – Design of rope drives

UNIT II DESIGN OF SPUR AND HELICAL GEARS

Spur gear – Introduction – Gear kinematics – Forces & stresses – Factors – Materials selection – design of spur gears – Helical gear – Introduction – Types – Gear kinematics – Virtual number of teeth – Forces & stresses – Factors – Design of helical gears

UNIT III DESIGN OF BEVEL AND WORM GEARS

Bevel gear – Introduction – classifications – Gear kinematics – Factors – Design of bevel gears – force analysis – Worm gear – Introduction – Classifications – Applications – Efficiency – Design of worm gears

9

9

UNIT IV	DESIGN OF GEAR BOXES	ar box housing – Progression ratio – I ear boxes	Kinematic arrangement
UNIT V Design of Electroma	TOUTO AND BRANKS	nes – Cone clutches – Internal exp neck brakes – External shoe brakes – I	panding rim clutches - Internal expanding shoe
brake Contact		Practical: - Periods	Periods

Practical: Tutorial: - Periods Coma Total 45 Periods 45 Periods Lecture:

1. Bandari V B, "Design of Machine Elements", 5th edition, Tata McGraw Hill Publishers, New Delhi,

- Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett, "Mechanical Engineering
- Design", 11th edition, Tata McGraw Hill Publishers, New Delhi, 2020 2.

REFERENCES:

- 1. Robert L Mortt, "Machine Elements in Mechanical Design", 6th edition, Pearson/Prentice Hall, 2021 Design Data Book, PSG College of Technology, M/s. Kalaikathir Publishers, Coimbatore, 2020
 Jindal U C, "Design of Transmission System", 3rd edition, Dorling Kindersley, 2010

	Continu	ous Internal Ass	essments		1	
Assessmen (100 Mark	ntl	Assessme (100 Mar	ntll	Total Internal	End Semester Examinations	
*Individual Assignment / Case Study / Seminar /	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments		
Project / MCQ			60	200	100	
40	60	40	00	40	60	
	Te	otal		100		

Head of the Department,

Mechanical Engineering,

SEMESTER VI

U21ME603	HEAT AND MASS TRANSFER		Cate	gory	: PC	с
	IIII III IIII IIII IIIII IIIIIIIIIIIII	L	Т	P	J	C
PRE-REQUISITES		3	0	2	0	4

- U21ME301- Engineering Thermodynamics
- U21ME304 Fluid Mechanics and Applications

COURSE OBJECTIVES:

- To impart knowledge on mechanisms of heat transfer under steady and transient conditions To familiarize with the sizing and rating of heat exchangers
- To explore the basic concepts of mass transfer models

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply general conduction equation to solve steady state and transient problems (Apply) CO2: Utilize empirical correlations to analyze convection heat transfer problems (Analyze)

CO3: Analyze heat exchangers and phase change heat transfer problems (Analyze) CO4: Solve radiation heat exchange problems (Apply)

CO5: Apply mass transfer principles to solve basic mass transfer problems (Apply)

POs			T	T	T									
COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	P010	P011	POID	000	PSO2
CO1	3	3	2	1	2						1011	P012	PS01	PSO2
CO2	3	3	2		4	-	-		2	1	-	-	2	
CO3			2	1	1	-	-	-	2	1			2	
	3	3	2	1	1	-			-			-	2	-
CO4	3	3	2	1	1				2	1	-	-	2	-
CO5	3	3				-	-	-	2	1	-	-	2	-
-		5	-	-	1	-	-	-	- 1	1				

SYLLABUS:

UNITI CONDUCTION HEAT TRANSFER

Thermodynamics and Heat Transfer - Heat transfer in Engineering - Mechanisms of Heat transfer -Concept of Driving potential General differential Equation of Heat conduction - Cartesian & Polar Coordinate systems - One dimensional steady state conduction - With & without heat generation -Composite systems – Critical radius of insulation – Heat transfer in fins – Introduction to transient

UNIT II CONVECTION HEAT TRANSFER

Concept of Velocity and Thermal boundary layer - Forced convection systems - Flow over surfaces - Flat plate, Cylinders & Spheres - Flow through tubes - Natural convection systems - Natural convection on a vertical flat plate & Horizontal cylinders - Case study - Reducing Heat Transfer

of the Depa Mechanical Eng KPR Institute of Engineering and Techno Arasur, Coimbatore - 641407

q

RADIATION HEAT TRANSFER

Thermal Radiation - Basic relations - Radiation between two black and Gray bodies - Radiation shape factor -Shape factor Algebra - Electrical Network Analogy for Thermal Radiation systems -Radiation shields - Radiation from Gases 9

BOILING, CONDENSATION AND HEAT EXCHANGERS

Boiling and Condensation heat Transfer - Boiling types -Heat Transfer Correlations -Condensation UNIT IV types - Heat Transfer Correlations - Types of Heat Exchangers - Overall Heat Transfer Coefficient -Fouling Factor – Analysis of Heat Exchangers – LMTD method & Effectiveness NTU Method

MASS TRANSFER UNIT V

Analogy between Heat and Mass Transfer - Mass Diffusion - Fick's Law of Diffusion - Boundary Conditions – Steady Mass Diffusion through a Wall – Mass Convection – Mass Convection Relations Simultaneous Heat and Mass Transfer

LIST OF EXPERIMENTS

1. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.

- Determination of heat transfer coefficient under natural convection from a vertical cylinder.
- Determination of heat transfer coefficient under forced convection from a tube. 2 Experimentation and simulation of finding overall thermal conductance and temperature
- 3.

3 distribution in case of a composite wall.

Determination of Stefan – Boltzmann constant.

- 5. Determination of emissivity of a grey surface. Determination of effectiveness and overall heat transfer coefficient of Parallel/Counter flow heat
- 6

7. Simulation of Steady and Unsteady heat conduction problem using MATLAB

Contact Periods:

Project - Periods Practical: 30 Periods Tutorial: - Periods Total 75 Periods Lecture: 45 Periods

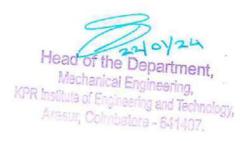
TEXT BOOKS:

- 1. Cengel, Yunus A, Ghajar, Afshin J., "Heat and mass transfer", 4th edition, McGraw Hill Education, Kothandaraman, C.P., "Fundamentals of heat and mass transfer", 4th edition, New Age
- International (p) limited, Publishers, New Delhi, 2012 2.

REFERENCES:

1. Sachdeva, R C., "Fundamentals of engineering heat and mass transfer", 5th edition, New Age

- Rudramoorthy, R., Mayilsamy, K., "Heat and mass transfer", 2nd edition, Pearson Publishers, New
- 3. Incropera, Frank P. (et...al)., K., "Fundamentals of heat and mass transfer", 6th edition, John Wiley
- & Sons, 2019


2.

1.

2.3

EVALUATION PATTERN:

Assessm	Innt I	rnal Assessments		End Semesto	r Examinations		
(Theor (100 Mai	ry)	Assessmen (Practical) (100 Marks)	Theory			
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	Examinations (Examinations will be conducted for 100 Marks)	Practical Examination (Examination will be conducted for 100 Marks)		
40	60	75 25			ee marks)		
25			20				
		25		35	15		
	50						
				50			
		Total	: 100				

SEMESTER VI

			Cate	gory	: PCO	0
U21ME604	SIMULATION AND ANALYSIS LABORATORY	L	Т	P	J	С
02 TWIE 004	Simolection	0	0	4	0	2

PRE-REQUISITES:

U21ME305 - Mechanics of Solids

COURSE OBJECTIVES:

- To give exposure to FEA and MATLAB software tools to analyze engineering problems
- To expose the students on different applications of simulation and analysis tools
- To solve the structural, vibration and thermal problems using FEA software tools

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Demonstrate simple vibration problems using MATLAB software (Apply)

CO2: Simulate mechanisms using MATLAB software (Apply)

CO3: Perform structural analysis for various 1D and 2D structural models (Apply)

CO4: Analyze thermal stresses in a component for heat transfer problems (Apply)

CO5: Conduct harmonic and transient analysis for 1D and 2D structural models (Apply)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3			-	-	1	. 	-	2	-
CO2	3	3	3	2	3	-	-	-	-	1	-	-	2	-
CO3	3	3	3	2	3	-	-	-	-	1	÷	-	2	-
CO4	3	3	3	2	3	-		-	-	1	-	-	2	-
CO5	3	3	3	2	3	-	-	-	-	1	-	-	2	-

LIST OF EXPERIMENTS

- 1. MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two variables
- 2. Use of MATLAB to solve simple problems in vibration
- 3. Mechanism Simulation using MATLAB
- 4. Force and Stress analysis using trusses elements
- 5. Stress and deflection analysis in beams with different support conditions
- 6. Stress analysis of rectangular plate with hole
- 7. Stress analysis of axi symmetric components
- 8. Thermal stress and heat transfer analysis of plates
- 9. Model analysis of beams
- 10. Harmonic and transient analysis of beams
- 11. Vibration analysis of spring-mass systems

Mechanical Engineering, PR Institute of Engineering and Technology Arasur, Colmbatore - 641407.

Contact Periods:

Lecture: - Periods

Tutorial: - Periods

Is Practical: 60 Periods

Project – Periods

Total 60 Periods

REFERENCES:

- Brian D. Harper, "Solving Dynamics Problems in MATLAB", 6th edition, John Wiley & Sons. Inc, 2007
- 2. Mary Kathryn Thompson, John M. Thompson," ANSYS Mechanical APDL for Finite Element Analysis", Butterworth-Heinemann, 2017
- Xiaolin Chen, Yijun Liu, "Finite Element Modeling and Simulation with ANSYS Workbench", 2nd edition, CRC Press, 2019
- 4. Erodgan Madenci, Ibrahim Guven, "The Finite Element Method and Applications In Engineering Using ANSYS", Springer, 2006

EVALUATION PATTERN:

Continuous Internal Assessm	nents				
Evaluation of Laboratory Observation, Record (Rubrics Based Assessments)	Test	End Semester Examinations			
75	25				
100	100				
40		60			
	100				

Head of the Department,

Mechanical Engineering, KIPR Institute of Engineering and Technology, Aresur, Coimbatore - 641407.

B.E. – ME – R20	21 – CBCS	100 contro for icon in logy					PRIET
		15/ 00 110 101		Cateo	ory:	EE	C
	DECION AND E	ABRICATION PROJECT	L	Т	P	J	C
U21ME605	DESIGN AND P	ADRIGATION NOCENTRY	0	0	0	8	4

ad and

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To identify a specific problem for the solid need and conduct a detailed review of literature
- To develop methodology to solve the identified problem
- To train the students in preparing project reports and presentation

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Engage in independent study to conduct appropriate surveys and identify a product to be developed with desired specifications for the benefit of the society (Apply)
- CO2: Design, develop, analyse the product using engineering principles and implement the product as per the specification, environmental standards/ safety norms and abiding the professional ethics (Apply)
- CO3: Schedule the project, engage in budget analysis, and assign responsibility for the team members (Apply)
- CO4: Communicate effectively through oral communication, project report, presentation and demonstration (Apply)

CO5: Perform in the team, contribute to the team and mentor/lead the team (Apply)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	3	3	3	-	3	-	-		1. /	-	3	3	-
CO2	-	-	-	3	3	3	3	3	-	-	-			-
CO3		-	-	-	-		-	-	64	-	3	-	2	-
CO4	-	-	-	-	-	-	-	-	-	3	-	-	-	-
CO5	-	-	-	-	-	-	-	-	3	-	-	-	-	-

Contact Periods:

Lecture: – Periods Tutorial: – Periods EVALUATION PATTERN:

 Continuous Internal Assessments (40 Marks)
 End Semester Examinations (60 Marks)

 Review I
 Review II
 Project Report
 Viva-Voice

 10
 15
 15
 10
 50

 Total: 100 Marks

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

Practical: 120 Periods

105

Total: 120 Periods

		ng and		
ute o	Centi	e for demin		3
linen	ACC	Coimb	KP	RIET
10	dy x	Caimp	20	n peyona

			Category: HSM				
U21SSG03	SOFT SKILLS - III	L	Т	P	J	С	
		0	0	2	0	1	

SEMESTER VI

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To improve language adeptness and to enhance fluency in language.
- To Gain emotional intelligence and to manage stress.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Write reports and make reasoning and assertions (Apply)

CO2: Overcome stress and attain work-life balance (Analyse)

CO-PO MAPPING:

POs Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	1	3	-			1
CO2	-	-	-	-	-	-	-	1	-	3	-	2		. 1

SYLLABUS:

LANGUAGE ADEPTNESS UNIT I 10 Sentence Completion - Report Writing - Logical Reasoning - Cause and Effect - Assertion and Reasoning - Digital Profiling - Creative Resume STRESS MANAGEMENT UNIT II 10 Factors Causing Stress - Positive and Negative Stress - Effects of Stress - Stress Overcoming Techniques - Context Based Tasks **EMOTIONAL INTELLIGENCE** UNIT III 10 Leadership effectiveness - Self-awareness - Self-management - Self-motivation - Empathy and Social Skills **Contact Periods:** Lecture: - Periods Tutorial: -Periods Practical: 30 Periods Project - Periods 30 Periods Total

TEXT BOOKS:

- 1. Daniel Goleman, "Emotional Intelligence: Why it Can Matter More Than IQ", 1st edition, Bloomsbury, 2009.
- 2. Alan Barker, "Improve Your Communication Skills: Present with Confidence; Write with Style; Learn Skills of Persuasion",1st edition, Kogan Page, 2010.

the Department Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407,

REFERENCES:

÷

- 1. Jeremy Stranks," Stress at Work: Management and Prevention", 1st edition, Butterworth-Heinemann,2005.
- Edward J Watson, "Emotional Intelligence: A Practical Guide on How to Control Your Emotions and Achieve Lifelong Social Success", 1st edition, Amazon Digital Services LLC, 2016.

EVALUATION PATTERN:

Continuous Internal Assessments	Marks			
Test - I	50			
Test - II	50			
Total	100			

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology Arasur, Colmonicore - 641407.

SEMESTER VII

		(Cate	ory:	HSN	1C
U21ME701	ENGINEERING ECONOMICS AND COST ANALYSIS	L	T	Ρ	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart knowledge on cost estimation of component
- To provide knowledge about value engineering
- To know about the cash flow in Industry .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the concept of engineering economics (Understand)

CO2: Discuss the concept of value engineering and the various payment factors (Understand)

CO3: Solve the cash flow problems (Apply)

CO4: Provide solution for maintenance and replacement (Apply)

CO5: Estimate depreciation in industries (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	-	-	2	-	2
CO2	3	2	2	-	-	-		-	-	-	(-)	2	-	2
CO3	3	2	2	-	-	-	-	-	-	-	-	2	-	2
CO4	3	2	2	-	-	-	-	-	-	-	-	2	-	2
CO5	3	2	2	-	-	-	-	-	-	-	-	2	-	2

SYLLABUS:

UNIT I INTRODUCTION TO ECONOMICS

Introduction to Economics - Flow in an economy - Law of supply and demand - Concept of engineering economics - Engineering efficiency - Economic efficiency - Scope of engineering economics - Element of costs - Marginal cost - Marginal revenue - Sunk cost - Opportunity cost -Break - Even analysis - V ratio - Elementary economic analysis - Material selection for product design - Selection for a product - Process planning - Make or buy decision

UNIT II VALUE ENGINEERING

Value engineering - Function - Aims - Value engineering procedure - Interest formulae and their applications -Time value of money - Single payment compound amount factor - Single payment present worth factor - Equal payment series sinking fund factor - Equal payment series payment present worth factor - Equal payment series capital recovery factor - Uniform gradient series annual equivalent factor - Effective interest rate - Examples in all the methods

UNIT III CASH FLOW

Methods of comparison of alternatives - Present worth method (Revenue dominated cash flow diagram), future worth method (Revenue dominated cash flow diagram - Cost dominated cash flow

9

Q

9

9

9

diagram) – Annual equivalent method (Revenue dominated cash flow diagram – cost dominated cash flow diagram) – Rate of return method – Examples in all the methods

UNIT IV REPLACEMENT AND MAINTENANCE ANALYSIS

Replacement and Maintenance analysis – Types of maintenance – Types of replacement problem – determination of economic life of an asset – Replacement of an asset with a new asset – Capital recovery with return and concept of challenger and defender – Simple probabilistic model for items which fail completely

UNIT V DEPRECIATION

Depreciation- Introduction - Straight line method of depreciation - Declining balance method of depreciation - Sum of the years digits method of depreciation - Sinking fund method of depreciation/ Annuity method of depreciation - Service output method of depreciation - Evaluation of public alternatives - Introduction examples - Inflation adjusted decisions - Procedure to adjust inflation - examples on comparison of alternatives and determination of economic life of asset - Case study

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods
				Total	45 Periods

TEXT BOOKS:

- Panneer Selvam R, Engineering Economics, 2nd edition Prentice Hall of India Ltd, New Delhi 2013 ISBN: 896–5–28424–366–2
- Courtland A. Collier, Charles R. Glagola, Engineering Economic and Cost Analysis, Addison Wesley Longman, 1998,3rd edition

REFERENCES:

- 1. Park, C.S. "Contemporary Engineering Economics" Prentice Hall of India 2002 3rd edition
- Donald.G. Newman Jerome.P.Lavelle "Engineering Economics and analysis" 2nd edition, Engg Press – Texas,2002
- Suma Damodaran, Managerial economicsII 2nd edition, Oxford university press 2006.

EVALUATION PATTERN:

Assessme (100 Mari		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal	- A	40	60
				1	00

Centre for
Courses Learn Beyond
*Coimbato(3 * Category: HSMC

SEMESTER VII

		6	ateg	ory:	HSM	С
U21ME702	INDUSTRIAL ENGINEERING	L	т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil .

COURSE OBJECTIVES:

- To learn how to perform time study activities and importance of lean tools
- To know the role of logistics and supply chain in modern transportation
- To learn how to construct project network .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Perform Time study activities to analyze the existing process (Understand)

CO2: Identify and reduce non-value-added activities in the process using lean tools (Understand)

CO3: Explain the strategic role of Logistics and Supply Chain Management in the cost

reduction and offering improved service to the customers (Understand)

CO4: Determine the shortest route to complete the project (Apply)

CO5: Apply quality tools to detect and rectify the failures in the process/products (Apply)

CO-PO MAPPING:

	POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	2	2	-	-	-	-	-	-	1	-	-	2	-	2
Γ	CO2	2	2	-	-	-	-	-	-	1	-	-	2	-	2
Γ	CO3	2	2	-	-	-	-	-	-	1	-	-	2	-	2
	CO4	2	2	-	-	-	-	-	-	1	-	-	2	-	2
	CO5	2	2	-	-	-		-	-	1		-	2	-	2

SYLLABUS:

UNIT I INTRODUCTION TO WORK MEASUREMENT AND PLANT LAYOUT

Industrial Engineering Principles - Concepts and Evaluation - Importance - Elements and Tools -Method study - Micro motion and memo motion study - work measurement - Techniques of work measurement - Time study - Plant Layout - Facility design and factors

UNIT II LEAN AND SIX SIGMA

Conventional Manufacturing Versus Lean Manufacturing - Principles and elements of Lean Manufacturing - 5S - Kanban - Kaizen - Value stream Mapping - PDCA Cycle. TPM - Pillars of TPM. TQM Principles and implementation

110

9

14 10

LOGISTICS, SUPPLY CHAIN AND INVENTORY MODELS UNIT III

Logistics and Supply chain Management - Definition- Evaluation and importance- Procurement-Modes of Transportation - Packing and Packaging - Storage and Warehouse Management -Inventory models - Economic order quantity models - ABC analysis - Elements of JIT Systems

UNIT IV **PROJECT NETWORK**

Networks models - Shortest route - Minimal spanning tree - Maximum flow models - Project network - CPM and PERT networks - Critical path scheduling - Sequencing models

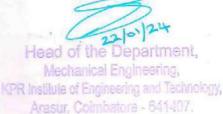
UNIT V PROCESS CAPABILITY AND SIX SIGMA

Process Capability studies - Seven QC Tools - FMEA - Design and Process FMEA. Six Sigma -Concepts-methodology-applications in manufacturing and service sectors

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical:	- Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:


- 1. Martand Telsang, "Industrial Engineering and Production Management", 1st edition, S. Chand and Company, 2000.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality" ,8th edition, First Indian Edition, Cengage Learning, 2012.

REFERENCES:

- 1. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990.
- Upendra Kachru, "Production and Operations Management Text and cases" 1st edition, Excel 2. books 2007.
- 3. Michael L.George, David Rownalds, Bill Kastle, What is Lean Six Sigma, McGraw Hill 2003
- 4. Adam, E. E.,, Jr., & Swamidass, P. M. (1989). Assessing operations management from a strategic perspective. Journal of Management, 15, 181-203.

Continuous Internal Assessments Assessment II Assessment | (100 Marks) (100 Marks) **End Semester Total Internal** *Individual *Individual Examinations Assessments Assignment / Assignment / Written Written Case Study / Case Study / Test Test Seminar / Seminar / Project / MCQ Project / MCQ 200 100 60 40 60 40 40 60 Total 100

EVALUATION PATTERN:

111

9

9

SEMESTER VII

		C	ateg	gory:	EE	C
U21ME703	PROJECT WORK PHASE - I	L	Т	Р	J	С
		0	0	0	4	2

PRE-REQUISITES:

Nil

COURSE OBJECTIVE

 To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same

SYLLABUS

The students individually/ in a group of 3 - 4 members can work on a topic approved by the Head of the Department under the guidance of a faculty member who is familiar in the area of interest. The student can select any topic which is relevant to Mechanical Engineering. The progress of the project is evaluated based on a minimum of three reviews. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report submitted and the viva–voce examination by an internal examiner and an external examiner

Contact Periods:

Lecture: - Periods	Tutorial: - Periods	Practical:	60 Periods	Total:	60 Periods

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Engage in independent study to conduct a research literature, identify a research work in mechanical and allied engineering for the benefit of the society (Apply)
- CO2: Identify and select appropriate engineering tools /components for the research work adopting the environmental standards/ safety norms and abiding professional ethics (Apply)
- CO3: Schedule the project, engage in budget analysis, and assign responsibility for the team members (Apply)
- CO4: Communicate effectively through oral communication, project report, presentation (Apply)

CO5: Perform in the team, contribute to the team and mentor/lead the team (Apply

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	P05	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	3	3	3	-	3		-	-	-	-	3	3	3
CO2	3	3	3	3	3	-	3	3		-	-	3	2	-
CO3	-		-	-	-	-	-	-	6 7 0	-	3	3	-	3
CO4	-	-	-	-	-	-		-	-	3	-	3	-	-
CO5	-	-	-	1	-	-	-	-	3	-	-	3	-	-

22/01

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology Arasur, Colmbatore - 64 (407

EVALUATION PATTERN:

Internal A	ssessment	(60 Marks)	End semester Examinations (40 Marks)					
Review I	Review II	Review III	Project	Report	Viva	Voce		
			Supervisor	External	Internal	External		
10	20	30	10	10	10	10		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

	SEMESTER VIII	mbatore	*	· ·		
			Cate	gor	y: EE	С
U21ME801	PROJECT WORK PHASE - II	L	Т	Ρ	J	c
and the second		0	0	0	20	10

PRE-REQUISITES:

Nil

COURSE OBJECTIVE

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same
- To train the students in preparing project reports, to analyze the results, make conclusions and to face viva-voce examination

SYLLABUS

The students individually/ in a group of 3 – 4 members can work on a topic approved by the Head of the Department under the guidance of a faculty member who is familiar in the area of interest. The student can select any topic which is relevant to Mechanical Engineering. The progress of the project is evaluated based on a minimum of three reviews. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated based on the report submitted and the viva–voce examination by an internal examiner and an external examiner

Contact Periods:

Lecture: - Periods Tutorial: - Periods Practical: 240 Periods Total: 240 Periods

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Engage in independent study to conduct a research literature, identify a research work and apply the mathematical, science and engineering concepts to carry the identified research work for the benefit of the society (Create)
- CO2: Identify and select appropriate engineering tools /components to design, implement, analyse and interpret the results of the work adopting the environmental standards/ safety norms and abiding professional ethics (Evaluate)
- CO3: Schedule the project, engage in budget analysis, and assign responsibility for the team members (Apply)
- CO4: Communicate effectively through oral communication, project report, presentation, demonstration and publication in conference/journal/patent (Apply)

CO5: Perform in the tean	a, contribute to the team and mentor/lead the team (A)	(pply)
--------------------------	--	--------

CO-PO MAPPING:

	AFFIN	G .	10									1		
POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3	3	3	3	-	3	-	-	-	-	-	3	3	-
CO2	3	3	3	3	3	-	3	3	-	-	-	3	2	-
CO3	-	-	-	-	-	-	-	-	-	-	3	3	-	3
CO4	-	-	1.01	-	-		-	-	1.74	3	-	3	-	-
CO5		-	-	-	9	2	2 -	-	3	-	-	3	-	-

1

EVALUATION PATTERN:

100

Internal A	ssessment	(60 Marks)	End	semester Exan	ninations (40 Ma	irks)
Review I	Review II	Review III	Project	Project Report Viva-Voce	Voce	
		6-21	Supervisor	External	Internal	External
10	20	30	* 10	10	10	10

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

0124 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

PROFESSIONAL ELECTIVE

			Cate	gory	: PEC	2
U21MEP01	DESIGN FOR MANUFACTURE AND ASSEMBLY	L	т	Р	L	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To learn the concepts of tolerance analysis
- To study the DFM&A impacts product design and manufacturing methodologies
- To provide knowledge on product design and processes

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify the systematic methods for design and manufacturing (Apply)

CO2: Apply a systematic procedure to analyze a tolerances (Understand)

CO3: Apply the concept of datums for machining and assembly (Understand)

CO4: Identify the true position theory for various assembly components (Understand)

CO5: Apply the design and tolerancing concept to structures (Understand)

CO-PO MAPPING:

Pos COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	2	2	-	-	-		-	-	-	-	-	2	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-	2	
CO3	2	2	2	-	1	-	-	-	-	-	-	-	2	-0
CO4	2	2	2	-	1-	-	-	-	-	-	-	-	2	-
CO5	2	2	2	-	-	-	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION TO DFMA

Phases of design – General requirements for material and process selection, effect of material properties and manufacturing process on design – DFM approach – DFM Guidelines – Product design for manual assembly, automatic assembly and robotic assembly – Computer aided DFMA

UNIT II TOLERANCE ANALYSIS

Process capability – metrics – costs aspects – Feature tolerance – geometric tolerance – surface finish, review of relationship between attainable tolerance grades and difference machining process – Cumulative effect of tolerances; sure, fit law, normal law and truncated normal law. Tolerance charting technique: Tolerance worksheets and centrality analysis, examples – Computer aided tolerance charting

9

UNIT III SELECTIVE ASSEMBLY AND DATUM SYSTEMS

Interchangeable selective assembly – Control and axial play; introducing secondary machining operations, laminated shims, examples. Datum systems: Degrees of freedom, grouped datum systems different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess pair and tongue – Slot pair – Computation of translational and rotational accuracy, geometric analyses and applications

UNIT IV TRUE POSITION THEORY

Comparison between co – Ordinate and convention method of feature location, tolerancing and true position tolerancing, virtual size concept, floating and fixed fasteners, projected tolerance zone, assembly with gasket, zero true position tolerance, functional gauges, paper layout gauging, compound assembly, examples

UNIT V DESIGN FOR MACHINING

9

Design features to facilitate machining – Functional and manufacturing datum features, component design, machining considerations, redesign for manufacture, examples – Form design: Form design of castings and weldments – Redesign of castings based on parting line considerations, minimizing core requirements – Redesigning case members using weldments

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Perious	
Lootaro				Total	45 Periods	

TEXT BOOKS:

- Boothroyd G., Dewhurst P. and Knight W., "Product Design for Manufacture and Assembly", 4th edition, Marcel Dekker, New York,2012
- George E. Deiter, "Engineering Design Material & Processing Approach", 2nd edition, McGraw Hill Education, 000

REFERENCES:

- Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", 5th edition, Tata McGraw Hill, New Delhi, 2017
- 2. Chitale A K and Gupta R C, "Product Design and Manufacturing", Prentice Hall of India, 2014
- Boothroyd, G. "Assembly Automation and Product Design", 2nd edition, Taylor and Francis, Boca Raton, Florida,2006
- Boothroyd, G., Dewhurst, P. and Knight, W., "Product Design for Manufacture and Assembly", 2nd edition, Marcel Dekker, New York,2002
- Boothroyd G., Dewhurst P. and Knight W., "Product Design for Manufacture and Assembly", 3rd edition, CRC Press,2010

Head of the Department, Mechanical Engineering, (PR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

117

EVALUATION PATTERN:

End Semester Examinations 100	5	sessments	uous Internal As	Contin	
			Assessme (100 Mar	5 (S. S. S. S.)	Assessme (100 Mark
	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ
100	200	60	40	60	40
60	40		tal	Tot	
	10				

01/24 Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

118

÷.,

B.E. - ME

– R2021 – CBCS		ACOL	entr	e for		
	PROFESSIONAL ELECTIVE	oimbat	A 59 0	gory	DEC	-
		1	sale	yory		
	COMPUTER AIDED DESIGN	L	Т	P	J	С
202	COMPOTER AIDED DECICIT	3	0	0	0	3

as of Engine

PRE-REQUISITES:

U21MEP

U21MEG01 – Engineering Graphics

COURSE OBJECTIVES:

- To inculcate knowledge on CAD design process and computer graphics
- To impart knowledge on curves, surface and solid modeling
- To familiarize concepts of visual realism, CAD standards, collaborative design and PLM .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Explain the fundamentals of computer graphics and their application in computer aided design software (Understand)
- CO2: Apply the concepts of curves, surface and solid modelling for new product development (Apply)
- CO3: Describe the concepts of collaborative design and PLM software (Understand)
- CO4: Explain the concepts of CAD visualization (Understand)
- CO5: Adapt the CAD standards to ensure the correct data conversion between different CAD software (Understand)

CO-PO MAPPING:

Pos	P01	PO2	PO3	P04	PO5	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	2	-	-	-	-	-	(m)	-	-	(72)	-	-	2	-
CO2	2	-	-	-	-	-	-	-		-		-	2	-
	-		-	-	-	-	-	-	-	-	-	-	2	
CO3	2		-		-		-		-	-	-	-	2	-
CO4	2	-	-	-							-	-	2	-
CO5	2	-	-	-	-	-	-	-	-	1.7			Z	

SYLLABUS:

INTRODUCTION UNITI

Product cycle - Design process - Sequential and concurrent engineering - Computer aided design -CAD system architecture - Computer graphics - coordinate systems - 2D and 3D transformations homogeneous coordinates - Line drawing - Viewing transformation

GEOMETRIC MODELING UNIT II

Basics - Curves, lines, arcs, circle and bilinear surface - Representation of curves - Hermite curve -Bezier curve - B spline curves - NURBS - Techniques for surface 119odelling - Surface patch -Coons and bicubic patches - Bezier and B-spline surfaces - Regularized Boolean set operations -Primitive in stancing - Sweep representations - Boundary representations - Constructive solid geometry - Comparison of representations - User interface for solid modelling 9

VISUAL REALISM UNIT III

Hidden-Line - Surface Solid removal algorithms - Shading - Coloring - Engineering Animation

9

9

UNIT IV COLLABORATIVE DESIGN AND PLM

Principles of collaborative - Design collaborative approaches - Collaboration tools - Collaborative design system Product information - PLM frame work - Introduction to windchill and siemens PLM software

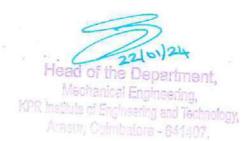
UNIT V CAD STANDARDS

Standards for computer graphics - Graphical Kernel System (GKS) - Standards for exchange images - Open Graphics Library (OpenGL) - Data exchange standards - IGES, STEP, CALS etc.communication standards

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:


- 1. Ibrahim Zeid, "Mastering CAD CAM", special Indian edition, Tata McGraw Hill Education, 2007
- 2. Donald Hearn and M. Pauline Baker, "Computer Graphics", 2rd edition, Pearson Education, 2002

REFERENCES:

- 1. Radhakrishnan. P, Subramanyan. S, "CAD/CAM/CIM", 3rd edition, New Age International Publishers,2008
- 2. Chris McMahon, Jimmie Browne "CAD/CAM Principles", Practice and Manufacturing management, 2rd edition, Pearson Education, 2000
- 3. William M.Newman , Robert .F.Sproull, "Principles of Interactive Computer Graphics", 2rd edition, Tata McGraw Hill Education, 2006
- 4. Groover. M, "CAD/CAM", 1st edition, Pearson Education, 2006

EVALUATION PATTERN:

	5	sessment	uous Internal As	Contin		
End Semester Examinations			Assessme (100 Mar	Assessment I (100 Marks)		
	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	
100	200	60	40	60	40	
60	40		tal	Tot		
00	10					

9

Q

PROFESSIONAL ELECTIVE

U21MEP03 MACHINE TOOL DES			Cate	gory	: PEC	5
	MACHINE TOOL DESIGN	L	т	Ρ	J	С
		3	0	0	0	3

PRE-REQUISITES:

- U21ME501 Design of Machine Elements
- U21ME602 Design of Transmission System

COURSE OBJECTIVES:

- To impart knowledge on different machine tools used for machining
- To acquire knowledge on the design criteria for machine tool structures
- To explore the design of slide ways, power screws and spindles for machine tools

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss different machine tools used for machining (Understand)

CO2: Design sliding and rolling friction elements like guide ways and power screws (Apply)

CO3: Apply minimum deflection criterion to select spindles and its bearings (Apply)

CO4: Design machine tool structures based on strength and stiffness considerations (Apply)

CO5: Apply failure theories to design components for fluctuating loads (Apply)

CO-PO MAPPING:

Pos	P01	PO2	PO3	PO4	PO5	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	-	-	-	-	1	-	-	-	-	0.70	2	-
CO2	3	3	2	-	-	-	-	-	-	-	-		2	-
CO3	3	3	2	-	-	-	-		-	-	-	-	2	-
CO4	.3	3	2	-	-	-	-	-	-	-	-	~	2	-
CO5	3	3	2	-	-	-	-		-	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION

Classification of machining processes – Machine tools – Machine tool construction – Factors – Performance criteria – Trends in modern machine tools – Kinematic arrangement of different types of machine tools – Calculation of cutting forces and power requirements for machining operation – Force distribution on different parts of machine tools

UNIT II DESIGN OF GUIDEWAYS AND POWER SCREWS

Design Criteria (Wear Resistance & Stiffness) Stick Slip phenomena aerostatic Slideways – Design of Anti friction Guideways – Concept of Combination Guideways. Function & Types of Guideways and Slideways – Types of Slideways & Antifrictionways – Sliding friction Power Screw for Wear Resistance – Strength – Stiffness – Buckling Stability

UNIT III DESIGN OF SPINDLE AND SPINDLE SUPPORTS

Function & Requirements of Spindle Units – Their Materials – Effect of Machine Tool Compliance on Machining accuracy – Design of Spindle for Bending – Deflection of Spindle Axis – Location of Bearings and Drive elements – Balancing – Device Requirements of Spindle Supports

9

UNIT IV DESIGN OF MACHINE TOOL STRUCTURE

Function & Requirement of Machine Tool Structure - Design Criteria from Strength & Stiffness considerations - Torsion and Bending - Manufacturing Factors affecting stiffness of machine tool structures - Basic Design procedure of machine tool structures

UNIT V DESIGN FOR FLUCTUATING LOADS

Stress Concentration and remedies - S.N. Diagram - Endurance limit - Factors affecting Endurance Strength - Design for Finite and Infinite life under reverse stresses - Cumulative damage - Soderberg and Goodman's Diagram

Contact Periods:

Lecture:	45 Periods	Tutorial:	-Periods	Practical: - Periods	Project	- Periods	
					Total	45 Periods	

TEXT BOOKS:

- 1. N. K. Mehta, "Machine Tool Design", 3rd edition, Tata McGraw Hill Education, 2017
- 2. D.K. Pal, S.K. Basu, "Design of machine Tools, 4th edition, Oxford University,2017

REFERENCES:

- 1. A. Bhattacharya and S.G. Sen., "Principles of Machine Tools", 2nd edition, New Central Book Agency,2009
- 2. N. S. Acherkan, "Machine Tool Design, 2nd edition, MIR Publisher, 2013
- 3. F. Koenigsberger, "Design Principles of Metal Cutting Machine Tools", 1st edition, Pergamon Publisher.2013

	Contir	uous Internal As	sessment	s	
			ent II rks)		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
	То	tal	40	60	
				1	00

EVALUATION PATTERN:

Head of the Department, Mechanical Engineering,

9

	PROFESSIONAL ELECTIVE	00/1	Cate	gory	: PEC)
U21MEP04	VIBRATION ANALYSIS AND CONTROL	L	т	Р	J	С
	VIBRA HON ANAL TOID AND COMMON	3	0	0	0	3

PRE-REQUISITES:

U21ME402 – Theory of Machines

COURSE OBJECTIVES:

- To familiarize students with two and multi degree of freedom systems
- To Impart knowledge on the vibration measuring instruments
- To gain knowledge on vibration and control in automobile components

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Solve problems in simple harmonic motion (Apply)

CO2: Determine vibratory responses of TDOF systems (Apply)

CO3: Determine vibratory responses of MDOF systems for the given conditions (Apply)

CO4: Select suitable vibration measuring instrument based on the damping conditions (Apply)

CO5: Calculate vibrations in automotive suspension systems (Apply)

Pos	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	3	2	-	-	-	-	-	-	-	-	-	3	-
CO2	3	3	2	-	-	-	-	-		-	-	-	3	-
CO3	3	3	2	-	-	-	-	1.40	-	-	-	-	3	-
CO4	3	3	2	-	-		-	-	-	÷	-	-	3	-
CO5	3	3	2		-	-	-	-	-	-	-	-	3	-

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION

Types of vibrations – Definitions – Simple Harmonic Motion (S.H.M.) – Work done by harmonic force – Principle of super position applied to SHM – Beats – Fourier theorem and problems

UNIT II TWO DEGREE OF FREEDOM SYSTEMS

Free and forced vibrations of damped and undamped systems – Equations of motion – Coordinate coupling and Principal coordinates – Dynamic vibration absorbers – Orthogonality principle – Technical applications

UNIT III MULTI DEGREE OF FREEDOM SYSTEMS

Equations of motion – Method of influence coefficients – Free vibration of undamped system – Natural frequencies and mode shapes – solutions by matrix method and influence coefficients – Mode shape Orthogonality – Free vibration of damped system – Rayleigh – Damping – General viscous damping – Forced vibrations of multi degree of freedom system – Harmonic excitations

Arasur, Coimbatore - 641407.

9

UNIT IV VIBRATION MEASURING INSTRUMENTS AND WHIRLING OF SHAFTS

Vibrometers – Accelerometer – Frequency measuring instruments and Problems – Whirling of shafts with and without damping – Discussion of speeds above and below critical speeds and Problems

UNIT V VIBRATION CONTROL IN STRUCTURES

Introduction – State space representation of equations of motion – Passive control – Active control and semi active control – Free layer and constrained damping layers – Piezo electric sensors and actuators for active control – Semi active control of automotive suspension systems

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Project - Periods

Total 45 Periods

TEXT BOOKS:

- 1. S. S. Rao, "Mechanical Vibrations", 6th edition, Pearson Education, 2021
- 2. S. Graham Kelly, "Fundamentals of Mechanical Vibration", 2nd edition, McGraw Hill Education,2000

REFERENCES:

- William T. Thomson, Marie Dillon Dahleh, Chandramouli, "Theory of Vibration with Application", 5th edition, Pearson Education, 2008
- C Sujatha, "Vibrations and Acoustics Measurements and signal analysis", 2nd edition, Tata McGraw Hill, 2017
- 3. V. P. Singh, "Mechanical Vibrations", 2nd edition, Dhanpat Rai & Company,2014
- A. G. Ambedkar, "Mechanical Vibrations and Noise Engineering", 2nd edition, PHI Learning Pvt Ltd,2006
- 5. G. K. Grover, "Mechanical Vibrations", 1st edition, Nem Chand and Bros, 2009

EVALUATION PATTERN:

	Contin	uous Internal As	sessment	S	
Assessme (100 Mari		Assessme (100 Mar			
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
	То	tal	40	60	
				1	00

9

20

B.E. – ME – R20	IST	Aca	tre f den	or nic		PRIET
	PROFESSIONAL ELECTIVE	3		1.0*	/	
		1ºa	Dates	jory:	PEC	;
1124MED05	TRIBOLOGY AND INDUSTRIAL APPLICATIONS	L	Т	Р	J	С
U21MEP05		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To build the knowledge on wear behaviour of materials under different environments
- To diagnose and control wear in metallic parts
- To assess wear in different mechanical components

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the students to know the basic concepts of wear (Apply)

CO2: Describe the concepts of friction and their measurements (Apply)

CO3: Estimate the wear in the lubricated contacts (Apply)

CO4: Diagnose and control the wear in engineering applications (Apply)

CO5: Develop their knowledge on tribology in different mechanical applications (Apply)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	-	-	1	-	-		~	-	-	1	-
CO2	2	2	2	-	-	1		-	-	-	-	-	1	
CO3	2	2	2	-		1	-	-	-	-	-		1	-
CO4	2	2	2	-		1	- 1	-	-	-	-	-	1	-
CO5	2	2	2	-	-	1	-		-	-		-	1	-

SYLLABUS:

INTRODUCTION TO WEAR UNIT I

Types of wear - Adhesive wear - Two body and three body abrasive wear - Erosive wear - Cavitation wear - Wear due to surface fatigue - Chemical reaction

SURFACE ROUGHNESS AND WEAR MEASUREMENTS UNIT II

Tribo systems and tribo elements - Measurement of Surface roughness (Re and Rz) - Experimental studies on friction on various tribo systems using pin-on-ring (POR) and pin - On - Disc (POD) machines - Sample preparation - Wear measurement of various tribo - elements using POR and POD machines - Calculation of wear volume and wear coefficient - Comparison with existing data

WEAR IN LUBRICATED CONTACTS UNIT III

Rheological lubrication regime - Functional lubrication regime - Fractional film defect - Load sharing in lubricated contacts - Adhesive wear equation - Fatigue wear equation - Numerical example

> 22/01/24 ad of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

9

9

9

9

UNIT IV DIAGNOSIS AND CONTROL OF WEAR

Diagnosis of wear mechanisms using optical microscopy and scanning electron microscopy – Wear resistant materials – Wear resistant coatings – Eco – Friendly coatings designing for wear – Systematic wear analysis – Wear coefficients – Filtration for wear control

UNIT V WEAR IN MECHANICAL COMPONENTS

Component wear – Bushings – Lubricated piston rings and cylinder bore wear – Dry piston rings – Rolling bearings – Seal wear – Gear wear – Gear couplings – Wear of brake materials – Wear of cutting tools – Chain wear

Contact Periods:

Lecture:	45 Periods	Tutorial:	 Periods 	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:

- Basu S K, Sengupta S N, Ahuja B B, "Fundamentals of Tribology", 2nd edition, Prentice Hall of India Learning,2006
- 2. Hutchings, Ian, Shipway, Philip, "Tribology: Friction and Wear of Engineering Materials", 2nd edition, Elsevier Science, United Kingdom,2017

REFERENCES:

- 1. Bhushan, Bharat, "Introduction to Tribology," 1st edition, John Wiley & Sons, 2013
- Fuller, Dudley D, "Theory and Practice of Lubrication for Engineers", 1st edition, John Wiley & Sons,2007
- Ghosh M K, Majumdar B C, Sarangi M, "Fundamentals of Fluid Film Lubrication", 2nd edition, Tata McGraw Hill Eduucation, 2014

	6	sessments	uous Internal As	Contin			
			Assessme (100 Mar		Assessment I (100 Marks)		
End Semester Examinations	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		
100	200	60	40	60	40		
60	40	Total					
00	10						

EVALUATION PATTERN:

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

B.E. – ME – R2	021 – CBCS	of Energy	refer	10		
	PROFESSIONAL ELECTIVE	and Co.	2 deur	500	10	-
	PRODUCT DEVELOPMENT AND LIFE CYCLE	79.	Cate	P	L	c
U21MEP06	MANAGEMENT	3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To familiarize with various strategies of PLM
- To impart knowledge on new product development, product structure and supporting systems
- To indulge in technology forecasting, product innovation, product building, and configuration

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the various strategies of PLM and Product Data Management (Apply)

CO2: Describe about the design and model simulation of a product (Apply)

CO3: Apply the concept of new product development and its structuring (Apply)

CO4: Estimate the advancements in forecasting and the tools in innovation (Apply)

CO5: Apply the virtual product development and model analysis (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	-	-	-		-	1	-	-	· -	2	-	-	1
CO2	2	-	-	-		-	1	-	10755	-	2	- 20	-	1
CO3	2	-	-	-	-	-	1	-	-	-	2	-		1
CO4	2	-	-	-	-	-	1	+	-	-	2	-	-	1
CO5	2	-	-	-	-		1	-	-	-	2	-	-	1

SYLLABUS:

UNIT I INTRODUCTION TO PLM AND PDM

Introduction to PLM – Need for PLM – Opportunities and benefits of PLM – Different views of PLM – components of PLM – Phases of PLM – PLM feasibility study – PLM Strategies – Strategy elements – Its identification – Selection – Implementation – Product Data Management – Implementation of PDM systems

UNIT II PRODUCT DESIGN

Engineering design – Organization and decomposition in product design – Product design process – Methodical evolution in product design – Concurrent engineering – Design for 'X' and design central development model – Strategies for recovery at end of life – Recycling – Human factors in product design – Modelling and simulation in product

the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407,

127

9

9

a

9

UNIT III PRODUCT DEVELOPMENT

New Product Development – Structuring new product development – Building decision support system – Estimating market opportunities for new product – New product financial control – Implementing new product development – Market entry decision – Launching and tracking new product program – Concept of redesign of product

UNIT IV TECHNOLOGY FORECASTING

Technological change – Methods of technology forecasting – Relevance trees – Morphological methods – Flow diagram and combining forecast of technologies Integration of technological product innovation and product development in business processes within enterprises – Methods and tools in the innovation process according to the situation – Methods and tools in the innovation process according to the situation – Methods and tools in the innovation process

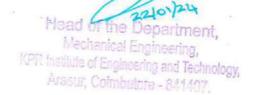
UNIT V PRODUCT BUILDING AND STRUCTURES

Virtual product development tools for components – Machines – And manufacturing plants: 3D CAD systems – Digital mock-up – Model building – Model analysis – Production (process) planning – And product data technology – Product structures: Variant management – Product configuration – Material master data – Product description data – Data models – Life cycles of individual items – Status of items

Contact Periods:

Lecture:	45 Periods	Tutorial:	 Periods 	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:


- John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer,2011
- Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", 2nd edition, CRC Press, 2019

REFERENCES:

- 1. Michael Grieves, "Product Lifecycle Management", 6th edition, McGraw Hill Education, 2006
- 2. Antti Saaksvuori and Anselmi Immonen, "Product Life Cycle Management", 5th edition, Springer,2013
- IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", 2nd edition, Artech House Publishers, 2013

Continuous Internal Assessments Assessment I Assessment II (100 Marks) (100 Marks) End Semester **Total Internal** *Individual *Individual Examinations Assessments Assignment / Assignment / Written Written Case Study / Case Study / Test Test Seminar / Seminar / Project / MCQ Project / MCQ 40 60 40 60 200 100 Total 40 60 100

EVALUATION PATTERN:

B.E. - M

3.E. – ME – R2	021 - CBCS PROFESSIONAL ELECTIVE	Centre for	Courses	* Colmhatore *		PRIET	
		etite.	Cate	gory	PEC	;	
1104MED07	DESIGN OF JIGS, FIXTURES AND PRESS TOOLS	L	т	Р	J	С	
U21MEP07	Design of block, functing the state	3	0	0	0	3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Applying the principles of locating and clamping in Jigs and fixtures and various components related to Press tools
- Designing various types of Jigs and Fixtures for given components and draw multiple views of the same with dimensions and parts List
- Designing various parts of cutting dies and forming dies and draw the standard dimensioned views

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Understand the principles of locating and clamping in Jigs and fixtures and various components related to Press tools (Understand)
- CO2: Design various types of jigs for given components and draw multiple views of the same with dimensions and parts List (Apply)
- CO3: Design various types of fixtures for given components and draw multiple views of the same with dimensions and parts List (Apply)
- CO4: Design various parts of cutting dies and draw the standard dimensioned views (Apply)

CO5: Design various parts of forming dies and draw the standard dimensioned views (Understand) CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	3	-	1	-	1		-	-	-	1	3	3
CO2	3	2	3	-	1	-	1	-	-	н	-	1	3	3
CO3	3	3	3	-	1	-	1		-	-	1	1	3	2
CO4	3	3	3	-	1	-	1	-	-	-	-	1	3	2
CO5	3	2	3	-	1	-	1	-	2		-	1	2	3

SYLLABUS:

LOCATING AND CLAMPING PRINCIPLES UNITI

Jigs and fixtures - Basic elements - Principles of location - Locating methods and devices -Redundant Location - Principles of clamping - Mechanical actuation - Pneumatic and hydraulic actuation - Standard parts - Drill bushes and jig buttons - Tolerances and materials used - New ways of Locating and clamping

DESIGN OF JIGS UNIT II

Degrees of freedom - Fool - Proofing - Types of jigs - Post, turnover, channel, latch, box, pot type and Angular post jigs - Indexing jigs - Principles of jig design - Design of jigs for drilling and reaming of the Department

Mechanical Engineerin	α.
KPR Institute of Engineering and T	echnology.
Avasur, Coimbatore - 641	407.

101/24

9

9

9

UNIT III DESIGN OF FIXTURES

General principles of fixture design – Elements of fixtures – Provision for tool setting – Design of fixtures for milling, turning and boring – Broaching and grinding, welding, assembly and inspection – Modular fixturing – Concepts and applications

UNIT IV DESIGN OF PRESS TOOLS

Press tool terminology – Sheet metal operations – Types of presses – Press accessories – Centre of pressure – Design of various elements of dies – Die block – Punch holder, die set, guide plates, stops, strippers – pilots – computation of press capacity – strip layout – Material Utilization – Simple blanking, piercing, compound and progressive dies

UNIT V DESIGN OF BENDING, FORMING, DRAWING AND MISCELLANEOUS DIES

9

Difference between bending forming and drawing – Blank development for above operations – Types of Bending dies – Press capacity – Spring back – Variables affecting Metal flow in drawing operations – Draw die inserts – Draw beads – Ironing – Design and development of bending – Forming – Drawing – Reverse redrawing and combination dies – Blank development for axisymmetric – Rectangular and elliptic parts – Single and double action dies

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:

- 1. Joshi, P.H. "Jigs and Fixtures", 2nd edition, Tata McGraw Hill Education, 2010
- 2. Joshi P.H "Press tools Design and Construction", 23rd edition, S. Chand & Sons, 2021

REFERENCES:

- 1. Donaldson, Lecain and Goold, "Tool Design", 5th edition, Tata McGraw Hill Education, 2017
- 2. Hoffman., "Jigs and Fixture Design", 5th edition, Cengage India, 2008
- 3. K. Venkataraman, "Design of Jigs Fixtures Press Tools", 2nd edition, Anne Publications, 2016

EVALUATION PATTERN:

	Contin	uous Internal As	sessment	5 .			
Assessme (100 Mari		Assessme (100 Mar					
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations		
40	60	40	60	200	100		
	То	tal		40	60		
				1	00		

Heat of the Department, Mechanical Engineering.

> nute of Engineering and Technology, have, Colmbatore - 841407

	PROFESSIONAL ELECTIVE		*0	aimh	ators	*/
			Cate	gory	PEC	2
	FAILURE ANALYSIS AND NON-DESTRUCTIVE	L	т	P	J	С
U21MEP08	TESTING	3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Gain knowledge on failure and their characteristics
- Familiarize the instrumentation in different NDT methods
- Explore the advanced instrumentation in NDT methods

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Identify various modes of failure and their effects (Understand)

CO2: Describe the procedure for liquid penetrant testing and magnetic particle testing (Understand)

CO3: Illustrate the thermography and eddy current testing methods (Understand)

CO4: Discuss the working principle of ultrasonic testing and acoustic emission (Understand)

CO5: Explain need for advance instrumentation to precisely find the internal defect (Understand)

POs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO5	3	2	-	-	-	-	-		-	-		-	2	-

CO-PO MAPPING:

SYLLABUS:

UNIT I FAILURE ANALYSIS

9

Failure – Types and characteristics – Cause of failure in components – Techniques of failure analysis – Concept of failure – Definition – Modes – Root causes – Mechanisms – Effects – Types of FMEA and their associated benefits – Design level FMEA – System level FMEA – Process level FMEA – Steps for performing FMEA – Criticality assessment – Risk priority number technique – Military standard technique – FMEA information needs – Data sources and users – Advantages of FMEA 9

UNIT II SURFACE NDE METHODS

Overview of the Non Destructive Testing Methods – Visual inspection – Unaided and aided – Liquid Penetrant Testing – Principles – Types and properties of liquid penetrants – Developers – advantages and limitations of various methods – Testing Procedure, interpretation of results – Magnetic Particle Testing – Theory of magnetism – Inspection materials magnetization methods – Interpretation and evaluation of test indications – Principles and methods of demagnetization – Residual magnetism

UNIT III THERMOGRAPHY AND EDDY CURRENT TESTING (ET)

Thermography – Principles – Contact and non – Contact inspection methods – Techniques for applying liquid crystals – Advantages and limitation – Infrared radiation and infrared detectors – Instrumentations and methods – Applications – Eddy Current Testing – Generation of eddy currents

 Properties of eddy currents – Eddy current sensing elements – Probes – Instrumentation – Types of arrangement – Applications – Advantages – Limitations – Interpretation/Evaluation.

UNIT IV ULTRASONIC TESTING (UT) AND ACOUSTIC EMISSION (AE)

Ultrasonic Testing – Principle – Transducers – Transmission and pulse – Echo method – Straight beam and angle beam – Instrumentation – Data representation – A/Scan – B–scan – C–scan Phased Array Ultrasound – Time of Flight Diffraction – Acoustic Emission Technique – Principle– AE parameters – Applications

UNIT V RADIOGRAPHY (RT)

Principle – Interaction of X–Ray with matter – Imaging – Film and film less techniques – Types and use of filters and screens – Geometric factors – Inverse square – Law– Characteristics of films – Graininess – Density – Speed – Contrast – Characteristic curves – Penetrameters – Exposure charts – Radiographic equivalence – Fluoroscopy – Xero – Radiography – Computed Radiography – Computed Tomography

Contact Periods:

Lecture:	45 Periods	Tutorial:	-	Practical: - Periods	Project	- Periods	
					Total	45 Periods	
Provide the second second second second							

TEXT BOOKS:

- Baldev Raj, T.Jayakumar, M.Thavasimuthu "Practical Non Destructive Testing", 5th edition, Narosa Publishing House, 2014
- 2. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010
- Carlson, Carl, "Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode and Effects Analysis", 2nd edition, John Wiley & Sons, 2012

REFERENCES:

- 1. Kapur, Kailash C., Pecht, Michael., "Reliability Engineering", 3rd edition, John Wiley & Sons, 2014
- Wong, B. Stephen., "Non-Destructive Testing Theory, Practice and Industrial Applications", 2nd edition, LAP Lambert Publication, 2014
- Nathan Ida, Norbert Meyendorf, "Handbook of advanced Nondestructive evaluation", 1st edition, Springer,2019
- Jose Luis Otegui, "Failure Analysis: Fundamentals and Applications in Mechanical Components", 1st edition, Springer,2014

	Contin	uous Internal As	sessment	S			
Assessme (100 Marl		Assessme (100 Mar					
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations		
40	60	40	60	200	100		
	То	tal		40	60		
				1	00		

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

2/01/24 the Department,

E

B.E. – ME – R202	1 - CBCS	Aca		ic	10.5	PRIET
	PROFESSIONAL ELECTIVE	2	_	*	PEC	:
	SMART MATERIALS AND STRUCTURES	L	T	P	J	С
U21MEP09	SMART MATERIALS AND STRUCTURED	3	0	0	0	3

ngineer

PRE-REQUISITES:

- U21PH201 Materials Science
- U21ME303 Engineering Materials and Metallurgy

COURSE OBJECTIVES:

- To learn about basis of smart material science, processing and characteristics
- To familiarize students with types of biomaterials and their properties
- To Impart knowledge on the smart structures and its advancements.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Describe the shape memory alloys and its processing and characteristics (Understand)

CO2: Explain the electro rheological and magneto rheological fluids and their applications (Understand)

CO3: Elucidate the properties and characterization of biomaterials (Understand)

CO4: Summarize the principles of smart structures and its applications in engineering fields (Understand)

CO5: Identify advanced smart materials for different engineering applications (Understand)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	+	-	- 2	-	-	3	-
CO2	3	-1	-	-	12	-	-	-	-	-	-	-	3	-
CO3	3	-	-	-	-	-	-	100	-	-	-	-	3	-
CO4	3	-	1	-	-	-	-	-	-		-	-	3	-
CO5	3	-	1	-	-	-	-	-	-	-	-	-	3	-

SYLLABUS:

INTRODUCTION UNIT I

9

9

9

133

12/01/24

Characteristics of composites and ceramics materials - Dynamics and controls - Concepts - Electro - Magnetic materials and shape memory alloys - Processing and characteristics

ELECTRO RHEOLOGICAL AND MAGNETO RHEOLOGICAL FLUIDS UNIT II

Mechanisms and Properties - Characteristics - Fluid composition and behavior - Discovery and Early developments - Summary of material properties - Applications of ER and MR fluids (Clutches, Dampers, others).

UNIT III BIOMATERIALS

Introduction - Bulk properties - Surface properties and characterization - Polymers - Silicone biomaterials - Medical fibers and biotextiles - Smart polymers - Bioresorbable and bioerodible materials - Natural materials - Metals and ceramics - Physicochemical surface modification

Head of the Departme

Biocompatibility concepts – Introduction to biocompatibility – Cell material interaction – Types of materials – Toxic – Inert – Bioactive – Long term effects of materials within the body – Cell response

UNIT IV SMART STRUCTURES

Principles of drag and turbulence control through smart skins – Applications in environment such as aerospace and transportation vehicles – Manufacturing – Repair and maintainability aspects

UNIT V ADVANCES IN SMART STRUCTURES & MATERIALS

Self-sensing piezoelectric transducers – Energy harvesting materials – Autophagous materials – Self – Healing polymers – Intelligent system design – Emergent system design

Contact Periods:

Lecture: 45 I	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:


- 1. M. V. Gandhi and B. S. Thompson, "Smart Materials and Structures", 3rd edition, Springer, 2012
- 2. Brian Culshaw, "Smart Structures and Materials", 2nd edition, Artech House Publication, 2004

REFERENCES:

- Duerig, T. W., Melton, K. N, Stockel, D. and Wayman, C.M., "Engineering aspects of Shape memory Alloys", 1st edition, Butterworth Heinemann, 2013
- Mohsen Shahinpoor and Hans-Jo rg Schneider "Intelligent Materials", 1st edition, Royal Society of Chemistry, 2007
- Mel Schwartz (Ed), "Encyclopaedia of Smart Materials" Volume –I and II, John Wiley & Sons, Inc.2002
- 4. Sujata V. Bhat, "Biomaterials", 1st edition, Narosa Publishing House, 2002
- 5. Gauenzi, P., "Smart Structures", 2nd edition, John Wiley & Sons, 2009

			uous Internal As	Contract of the second second	
			Assessme (100 Mar	Assessment I (100 Marks)	
End Semester Examinations	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ
100	200	60	40	60	40
60	40		tal	To	
)	100				

EVALUATION PATTERN:

KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

B.E

B.E. – ME – R2021 – CBCS	3	KPRIET
	PROFESSIONAL ELECTIVE	Category: PEC
	COMPOSITE MATERIALS	L T P J C
U21MEP10		3 0 0 0 3

(ON -

PRE-REQUISITES:

U21ME303 - Engineering Materials and Metallurgy

COURSE OBJECTIVES:

- To introduce the various composite materials and sandwich structure technology.
- To provide an understanding of the manufacturing techniques in composite structures.
- To impart knowledge on industrial applications of composite materials.

COURSE OUTCOMES:

Upon completion of the course- the student will be able to

CO1: Elaborate the classification of composites materials and composite structure (Understand) CO2: Discuss the various reinforcement and matrices in composite materials (Understand) CO3: Discuss the various fabrication methods, properties and applications of MMC (Understand) CO4: Explain the various method for manufacturing of polymer composite materials (Understand) CO5: Develop the knowledge in different processing methods of CMC with industrial applications (Understand)

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	2	1	-	-	-	-	-	-	-	-	-	2	-
CO2	3	2	1	-	-/	-	-	-	-	-		-	2	-
CO3	3	2	1	-		-	-	-	-	-	-	-	2	-
CO4	3	2	1	-	-	-	-	1.4	-	-		-	2	1
CO5	3	2	1	-	-	-	-	-	-	-	-	-	2	-

CO - PO MAPPING:

SYLLABUS:

INTRODUCTION TO COMPOSITE UNIT I

Definition - Classification of composite materials based on structure - Based on matrix - Advantages and application of composites - Functional requirements of reinforcement and matrix - Reinforcement types - Fibres - Continuous - Particulate and whisker reinforcement - Properties - applications -Comparison of fibre strength - Matrix materials - Properties - Wettability fiber with matrix - Effect of surface roughness - Interfacial bonding

REINFORCEMENT AND MATRICES UNIT II

Manufacturing process - Properties, structure and uses of glass - Carbon - Aramid and boron fibers - Extraction process - Properties - Structures and uses of natural fiber - Types - Properties -Chemistry and applications of fillers such as silica - Titanium oxide - Talc - Mica etc - Thermoset and thermoplastics matrices - Properties of epoxy - Polyester - Nylon - Polypropylene and PEEK matrices

Head of the De

135

UNIT III METAL MATRIX COMPOSITES (MMC)

Fabrication of MMC: solid state fabrication – Liquid state fabrication and in – Situ fabrication techniques – Interfaces in MMC – Mechanical bonding – Chemical bonding and interfaces in – Situ composites – Discontinuously reinforced MMC – Properties – Application of MMC

UNIT IV POLYMER MATRIX COMPOSITES (PMC)

Fabrication of PMC: Hand layup method – Compression and Resin Transfer Moulding – Pressure and vacuum bag process – Filament winding – Protrusion – Reinforced RIM – RRIM – Injection moulding – SMC and DMC – Advantages and disadvantages – Application of PMC

UNIT V CERAMIC MATRIX COMPOSITES (CMC)

Fabrication and processing methods of CMC: Powder processing – Slurry infiltration – Liquid infiltration – Chemical vapor infiltration – Directed metal oxidation – Properties – Comparison of polymers – Metals and ceramics – Applications of CMC

Contact Periods:

Lecture:	45 Periods	Tutorial:	 Periods 	Practical: - Periods	Project	- Periods	
TEXT DO					Total	45 Periods	
TEXT BOO	JKS:						

- 1. John C. Bittence, "Engineering Plastics and Composites", 1st edition, ASM Pblisher, 2016
- 2. Issac, M. Daniel, "Engineering Mechanics of Composite Materials", 2nd edition, Oxford University publication, 2005

REFERENCES:

- 1. Dominick V. Rosato, "Designing with Reinforced composites Technology Performance Economics", 8th edition, Carl Hanser, 2017
- 2. Nicholas P. Cheremisionff, "Fiber glass Reinforce Plastics", N.J. U.S.A. Reprint 2015
- Y.C. Ke, P. Stroeve and F.S. Wang, "Polymer layered silicate and silica nano composites", 1st edition, Elsevier,2005

	Contin	uous Internal As	sessment	S	
Assessme (100 Mari		Assessme (100 Mar			
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
	То	tal		40	60
	10	tai	æ.	1	00

EVALUATION PATTERN:

136

9

9

- CBCS	Institute or	Cer	aden ours	nic KI	PRIET
PROFESSIONAL ELECTIVE	10	* C	ours gory	tore	*/
NON-TRADITIONAL MACHINING PROCESSES	L	т	P	L	c
NON-IRADITIONAL MACHINE THE	3	0	0	0	3

PRE-REQUISITES:

U21MEP11

U21ME302 - Manufacturing Technology - I

COURSE OBJECTIVES:

To comprehend the unconventional manufacturing processes and study its advantages over conventional techniques.

- To impart knowledge on surface engineering process
- To impart knowledge on advanced and finishing processes

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the various unconventional machining processes (Understand)

CO2: Illustrate the various Thermal machining processes (Understand)

CO3: Recognize the appropriate surface treatment for property enhancing (Understand)

CO4: Identify various Chemical and Hybrid machining processes (Understand)

CO5: Utilize appropriate advanced finishing process for a product (Apply)

P09 P010 P011 P012 PS01 PS02 POs **PO8** PO4 PO5 P06 P07 PO2 PO3 PO1 COs 2 ------3 2 _ CO1 . 2 --------3 -..... --CO2 2 ---2 ----2 -CO3 3 2 ------2 ... --3 -CO4 -2 ... ---2 -CO5 3 -...

CO-PO MAPPING:

SYLLABUS:

UNCONVENTIONAL MACHINING PROCESS UNITI

Unconventional Machining Process (UMP) Classification - EDM and Wire cut EDM process - Process parameters - Surface finish and MRR - Abrasive Jet machining - Principles - Equipment's -Applications - Advantages and limitations

THERMAL MACHINING PROCESSES UNIT II

Laser beam machining (LBM) - Plasma arc machining (PAM) - Electron beam machining (EBM) -Beam control techniques - Advantages - Disadvantages and applications

SURFACE TREATMENT PROCESS UNIT III

Surface Cleaning - Methods of cleaning - Surface coating types - Ceramic and plastic coating -Economics of coating - Physical vapor deposition - Chemical vapor deposition - Plasma spraying -Ion implantation - Diffusion coating - Boriding and chromizing - Cladding - Laser gladding - Friction

> Department, Head of the KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

9

9

9

9

stir processing – Laser hard facing – Micro Arc Oxidation process – Shot peening and ultrasonic shot peening – Thermal barrier coating – Laser shock peening – Nano scale surface hardening

UNIT IV CHEMICAL AND HYBRID MACHINING PROCESS

Hybrid Machining Process – Electro Chemical Drilling – Shaped Tube Electrolytic Machining – Electro stream Drilling – Electro Chemical Jet Drilling – Electro Chemical Deburring – Electro Chemical Grinding (ECG) – Electro Chemical Honing (ECH) – Electrochemical super finishing – Electrical Discharge Grinding (EDG) – Electrical Discharge Diamond Grinding (EDDG) – Electro Chemical Discharge Grinding (ECDG) – Process capabilities and applications

UNIT V ADVANCED FINISHING PROCESS

Abrasive Flow Machining (AFM) – Magnetic Abrasive Finishing (MAF) – Magneto-rheological Finishing (MRH) – Chemo Mechanical Polishing (CMP) – Working principle – Mechanism of material removal – Surface quality – Applications

Contact Periods:

Lecture: 45 Peri	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods	
				Total	45 Periods	

TEXT BOOKS:

- 1. P.C.Pandey and H.S.Shan, "Modern Machining Process", 2nd edition, Tata McGraw Hill Education, 2017
- 2. Adithan M, "Unconventional Machining Process", 1st edition, Atlantic Publishers, 2018

REFERENCES:

- 1. Akhlesh Lakhtakia, "The Hand Book of Nano Technology, Nanometer Structure, Theory, Modeling and Simulations", 1st edition, John Wiley & Sons, 2004
- 2. J Paulo Davim, "Materials and Surface Engineering", 1st edition, Woodhead Publishing, 2012
- 3. H.El-Hofy, "Fundamentals of Machining Processes: conventional and non-conventional", 2nd edition, CRC Press,2014

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

B.E

B.E. – ME – R2021 – (CBCS	entitute Aca Con	dem ursi		Unnology	PRIE) T
	PROFESSIONAL ELECTIVE	03 * 00	incho	tore gory:	1	;	
	WELDING TECHNOLOGY	L	т	P	J	С	
U21MEP12	WELDING TEORINGEOOT	3	0	0	0	3	

neer

PRE-REQUISITES:

U21ME302 - Manufacturing Technology - I

COURSE OBJECTIVE

Objective of this course is to

- Gain knowledge on basics of welding and their classification
- Explore knowledge on weldability issues in joining of different metals
- Learn the principles of Robotics in welding applications

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the working principles of various arc and resistance welding processes (Understand)

CO2: Illustrate the solid-state welding process for engineering applications (Understand)

CO3: Describe the working principles of special welding processes (Understand)

CO4: Interpret the different weld joint design, weldability issues and testing of weldments (Apply)

CO5: Analyze the effect of heat transfer in welding using different mathematical models (Apply)

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	-	-		-		-	-	-	-	-	-	2	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO3	3	-	-	-	-	-	-	-		-	ан. С	-	2	-
CO4	3	2	-	-	-	-	-	-	-	1	-	-	2	-
CO4	3	2		-		-	-	-	-	-	-	-	2	-

SYLLABUS:

ARC AND RESISTANCE WELDING PROCESSES UNIT I

Variants of TIG and MIG welding - CMT welding process - Electroslag welding processes - Seam welding - Projection welding - Resistance Butt welding - Flash Butt welding - High frequency resistance welding processes - Advantages - Limitations and applications 9

SOLID STATE WELDING PROCESSES UNIT II

Cold welding - Diffusion bonding - Explosive welding - Ultrasonic welding - Friction welding - Friction stir welding - Forge welding - Roll welding and Hot pressure welding processes - Advantages -Limitations and applications

SPECIAL WELDING PROCESSES UNIT III

Electron beam - Laser beam welding - Plasma arc processes - Weld cladding - Surfacing advantages - Limitations - Introduction to Robotic welding - Underwater welding - Case studies and applications

9

a

9

DESIGN OF WELD JOINTS, WELDABILITY AND TESTING OF WELDMENTS UNIT IV

Various weld joint designs - Welding defects - Causes and remedies - Weldability of Aluminium -Copper - Titanium and Stainless steels - Residual stresses and distortion in welding - Destructive and non-destructive testing of weldments

UNIT V WELDING METALLURGY AND WELD SIMULATION

Weld thermal cycles and their effects - Effects of pre and post weld heat treatments - Concept of HAZ - Thermal modeling and simulation of welding processes - Governing heat transfer equations and boundary conditions for various types of welding processes

Contact Periods:

Lecture:	45 Periods	Tutorial:	-	Practical: - Periods	Project	- Periods	
					Total	45 Periods	

TEXT BOOKS

- 1. Little R.L., "Welding and welding Technology", 34th reprint, Tata McGraw Hill Education, 2008
- Parmer R.S., "Welding Engineering and Technology", 1st edition, Khanna Publishers,2008
 Norrish, J, "Advanced Welding Processes", 2nd edition, Elsevier Science,2006

REFERENCE

- 1. Mishra. R.S and Mahoney. M.W, "Friction Stir Welding and Processing", 14th edition, Springer,2014
- 2. Lindgren, Lars Erik, "Computational Welding Mechanics", 1st edition, CRC Press, 2007
- 3. Paulo Dvaim, "Welding Technology", 3rd edition, Springer, 2021
- 4. Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 2nd edition, John Wiley & Sons,2012

	6	sessment	uous Internal As	Contin			
			Assessme (100 Mar	Assessment I (100 Marks)			
End Semester Examinations	Total Internal Assessments	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		
100	200	60 40 60 200					
60	40	Total					
00	10						

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

Mechanical Engineerin KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407

	1	SENSIT	trof	or	V	7
	tustitu		adem		PRIE	
ELECTIVE	/	· *		tois		1
COM NUMBER		C	atego	ry: PE	C	
			T	D	C	

	PROFESSIONAL ELECTIVE	*c	atego	ry: PE	С
J21MEP13	ADDITIVE MANUFACTURING	L	т	Р	С
	ADDITIVE MANOPACTORING		0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To know the principle, methods, possibilities and limitations as well as environmental effects of Additive Manufacturing technologies
- To be familiar with the characteristics of the different materials used in Additive Manufacturing technologies
- To understand the 3D printing processes and its applications

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Describe an overview of additive manufacturing and applications (Understand)

CO2: Explain the various designing techniques involved in additive manufacturing (Understand)

- CO3: Familiarize with the manufacturing method of photopolymerization and powder bed fusion processes (Understand)
- CO4: Illustrate the manufacturing method of extrusion based and sheet lamination processes (Understand)
- CO5: Explain the manufacturing method of printing processes and beam deposition processes (Understand)

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	P08	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3	-		-	-	-	-	-	-	-	-	-	3	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	3	3 4 0
CO4	3	-	-	-	-	-	-	-	-		•	-	3	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	3	-

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION

9

9

Overview – Need – Development of Additive Manufacturing Technology – Principle – AM Process Chain – Classification – Rapid Prototyping – Rapid Tooling – Rapid Manufacturing – Applications – Benefits – Case studies

UNIT II DESIGN FOR ADDITIVE MANUFACTURING

Data processing – CAD model preparation – Part orientation and support structure generation – Model slicing – Tool path generation – Design for Additive Manufacturing: Concepts and objectives – AM unique capabilities – DFAM for part quality improvement – Customized design and fabrication for medical application

9

9

9

UNIT III PHOTOPOLYMERIZATION AND POWDER BED FUSION PROCESSES

Photo polymerization: SLA – Photo curable materials – Process – Advantages and Applications – Powder Bed Fusion: SLS – Process description – Powder fusion mechanism – Process Parameters – Typical Materials and Application – Electron Beam Melting

UNIT IV EXTRUSION BASED AND SHEET LAMINATION PROCESSES

Extrusion Based System: FDM – Introduction – Basic Principle – Materials – Applications and Limitations – Bio Extrusion – Sheet Lamination Process: LOM – Gluing or Adhesive bonding – Thermal Bonding

UNIT V PRINTING PROCESSES AND BEAM DEPOSITION PROCESSES

Three - Dimensional Printing (3DP) – Droplet formation technologies – Continuous mode – Drop on Demand mode – 3DP Advantages – Bioplotter – Beam Deposition Process: LENS – Process description – Material delivery – Process parameters – Materials – Benefits – Applications

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical: - Periods Total: 45 Periods

TEXT BOOKS:

- Chua C K, and Leong K F, "Rapid prototyping: 3D printing and additive manufacturing principles and applications", 5th edition, World Scientific Publishing Company,2019
- 2. Ramesh, S, "A Textbook of Rapid Prototyping", 12th edition, Ane Books, 2017

REFERENCES:

- 1. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", 2nd edition, Hanser Gardner Publication, 2011
- 2. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", 2nd edition, Springer, 2006
- Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", 1st edition, CRC Press, 2007
- 4. Tom Page, "Design for Additive Manufacturing", 2nd edition, LAP Lambert Academic Publishing,2012

	Contin	uous Internal As	sessment	S			
Assessment I (100 Marks)		Assessme (100 Mar					
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations		
40	60	40	60	200	100		
	То	tal	40	60			
				1	00		

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

PROFESSIONAL ELECTIVE

		C	atego	ry: PE	C
	BIOMATERIALS AND CERAMICS	L	Т	Ρ	С
U21MEP14	BIOMATERIALO AND CLICATION	3	0	0	3

PRE-REQUISITES:

U21ME303 – Engineering Materials and Metallurgy

COURSE OBJECTIVES:

- To acquaint the bio materials used in medical application
- To learn the effectiveness of the bio materials technology and the medical devices

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Classify biomaterials and their performance with respect to their applications (Understand)

CO2: Explain the composition and properties of Polymeric and Composite biomaterials

(Understand)

CO3: Identify suitable testing for biomaterial Implant (Understand)

CO4: Select appropriate biomaterials for implant and surgical aids (Understand)

CO5: Explain the applications of various metallic and Ceramic bio materials (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
C01	3	-	-	-	-	1	-	-	-	-	14	-	3	-
CO2	3	-	-	-	-	1	-	-	-	-	-	-	3	-
CO3	3	-	-	-	-	1	-	-	-	-	-	-	3	-
CO4	3	-		-	-	1	-	-	-	-	-	-	3	-
CO5	3	-	-	-	-	1	-	-	-	-	-	-	3	-

SYLLABUS:

UNIT I INTRODUCTION TO BIOMATERIALS

Biomaterial – Types of Biomaterials – Biocompatibility – Biological material – Biodegradable material – Bioresorbable material – Bio-inert material – Bio-active material – Pyrogenicity – Minimum Requirements of Biomaterials – Surface Properties of Biomaterials – Desirable Properties of Biomaterial – Performance of Biomaterials – Applications of Biomaterials

UNIT II POLYMERIC & COMPOSITE BIOMATERIALS

Polymeric Biomaterials: Introduction – Basic structures of Polymers – Hydrogel – Bone cement – Fluorocarbon polymers – Silicon Rubber – Bioactive Polymers – Biodegradable Polymers – Applications – Composite Biomaterials: Introduction – Dental filling Composites & cement – Porous Composites – Fibrous & Particulate composites

9

9

9

9

UNIT III BIOCOMPATIBILITY TESTING & amp; RESPONSE OF BIOMATERIAL TO HUMAN BODY

Biocompatibility Testing: Introduction – In-Vitro Testing – In-Vivo Testing – Hypersensitivity – Haemocompatibility – Odontocompatibility – Osteocompatibility – Cytotoxicity – Genotoxicity – Carcinogenicity – Response of Biomaterial to Human Body: Blood-Biomaterial Interactions – Biomaterials – Tissue Interactions – Tissue response to Implants – Inflammation – Wound Healing – Foreign Body Response – Infection and Tumorigenesis of Biomaterials

UNIT IV BIO-IMPLANTS & SURGICAL AIDS

Stent, Vascular grafts – Artificial Heart valves – Inferior Vanacava filter – Contact lenses – Intra-ocular Lenses – Artificial Silicon Retina – Temporary fixation Devices – Total Hip Replacement – Total Knee Replacement – Dental filling – Restoration material – Dental implants – Suture materials – Wound dressings – Tissue Adhesives

UNIT V METALLIC & CERAMIC BIOMATERIALS

Metallic Biomaterials: Introduction – Stainless steel – Co-Cr Alloys – Ti-Alloys – Nitinol – Dental metals, Corrosion of Metallic implants – Manufacturing of Metallic implants – Applications – Ceramic Biomaterials: Introduction – Types of Ceramics – Bio-inert ceramics: Alumina – Zirconia – Carbon – Bioresorbable ceramics: Calcium Phosphate – Bioactive ceramics: Glass ceramics – Applications

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Total:	45 Periods

TEXT BOOKS:

- William R., "Biomaterials Science: An Introduction to Materials in Medicine", 4th edition, Academic Press, 2020
- Michael Shuler, Fikert Kargi, Matthew De Lisa., "Bioprocess Engineering: Basic Concepts", 3rd edition, Prentice Hall International Series, 2017

REFERENCES:

- 1. "Cell Culture Bioprocess Engineering", 2nd edition, Wei-Shou Hu publishers, 2020
- Biomaterials Science: "An Introduction to Materials in Medicine", 3rd edition, Academic Press 2012
 Tadashi Kokubo, "Bioceramics and their Clinical Application", 1st edition, Woodhead Publisher, 2008

	Contin	uous Internal As	sessment	5	
Assessme (100 Mark		Assessme (100 Mar			
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40	60	200	100
Total				40	60
				1	00

EVALUATION PATTERN:

	PROFESSIONAL ELECTIVE	Hart C	ours	ses	100	tom De	
		Category: PEC					
U21MEP15	OPERATIONS RESEARCH	L	Т	P	J	С	
		3	0	0	0	3	

Centre for

Academic

PRE-REQUISITES:

Nil .

COURSE OBJECTIVES:

- To impart the knowledge on linear programming methods to solve engineering problems
- To study the concepts of network and inventory models
- To learn queuing theories and decision models to solve real time problems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply the concepts of linear programming models to solve engineering problems (Apply)

CO2: Demonstrate problem solving ability using network models (Apply)

CO3: Use the optimization techniques in inventory control (Apply)

CO4: Make use of Queueing theories to solve real-time problems (Apply)

CO5: Demonstrate problem solving ability using decision models (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	P09	PO10	PO11	PO12	PSO1	PSO2
C01	2	3	2	-	1	-	-	-	-	-	-	1	-	2
CO2	2	3	2	-	1	-	-	-	-		-	1	-	2
CO3	2	3	2	-	1	-	-	-	-	11-	-	1	-	2
CO4	2	3	2	-	1	-	-	-	-	-	-	1	-	2
C05	2	3	2	-	1	-	-	-	-	-	-	1	-	2

SYLLABUS:

LINEAR MODELS UNITI

The phase of an operation research study - Linear programming - Graphical method - Simplex algorithm - Duality formulation - Sensitivity analysis using software (TORA)

NETWORK MODELS UNIT II

Network models - Shortest route - Minimal spanning tree - Maximum flow models - Project network - CPM and PERT networks - Critical path scheduling - Sequencing models - Demonstration of network model using software

INVENTORY MODELS UNIT III

Inventory models - Economic order quantity models - Quantity discount models - Stochastic Inventory models - Multiproduct models - Inventory control models in practice - Introduction to SAP

QUEUING THEORY UNIT IV

Queueing models - Queueing systems and structures - Notation - Parameter - Single server and multi- server models - Poisson input - Exponential service - Constant rate service - Infinite population 0124 Simulation

artment. Mechanical Engineering, **KPR Institute of Engineering and Technology,**

9

9

9

UNIT V DECISION MODELS

Decision models – Game theory – Two-person zero sum games – Graphical solution – Algebric solution – Linear programming solution – Replacement models – Models based on service life – Economic life – Single / Multi variable search technique – Application of OR models – Case studies

Contact Periods:

s Total: 45 Periods	;
	Total: 45 Periods

TEXT BOOKS:

- 1. H.A.Taha, "Operations Research", 8th edition, Prentice Hall of India, 2016
- 2. Shennoy, Srivastava, "Operation Research for Management", 3rd edition, New Age Publisher, 2018

REFERENCES:

- 1. Ravindran, A., Phillips, D.T., & Solberg, J.J. "Operations research-principles and practice" 2nd edition, John Wiley & Sons, 2015
- 2. Hillier, F.S., & Lieberman, G.J. "Introduction to operations research concepts and cases" 9th edition, Tata McGraw Hill Education, 2017

EVALUATION PATTERN:

	Contin	uous Internal As	sessment	S	
Assessme (100 Mari			Assessment II (100 Marks)		-
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations
40	60	40 60 200		200	100
Total				40	60
1 101 1 0				1	00

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

Head of the Department, Mechanical Engineering,

KPR Institute of Engineering and Technology, Arasur, Colimbatore - 641407.

021 - CBCS (2) A	cade	mic	auth holog		
PROFESSIONAL ELECTIVE	-	10	gory	PEC	
DROCERS BLANNING AND COST ESTIMATION	L	т	Р	L	С
PROCESS PLANNING AND COOT LOTING	3	0	0	0	3
	A A	PROFESSIONAL ELECTIVE Acade Course PROFESSIONAL ELECTIVE	PROFESSIONAL ELECTIVE Academic Courses	PROFESSIONAL ELECTIVE Academic S Courses * PROFESSIONAL ELECTIVE	PROFESSIONAL ELECTIVE Academic 5 Kind Courses * Courses

ngineer

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce the process planning concepts to make cost estimation
- To determine the process and sequence of operations to obtain a useful final product
- To enhance the knowledge related to cost estimation .

COURSE OUTCOMES:

CO-PO MAPPING:

Upon the completion of this course the students will be able to

CO1: Select the process, equipment, and tools for various industrial products (Understand)

CO2: Prepare process planning flow chart (Understand)

CO3: Explain the concept of work study (Understand)

CO4: Apply motion study concepts for versatile industry (Understand)

CO5: Calculate the machining time for various machining operations (Apply)

POs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	2	-	-	-	-	-	-	-	-	-	2	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2	-	2
CO3	2	2	-	-	-	-	-	-	-	-	5 	2	-	2
CO4	3	2	-	-	-	-	-	-	-	-	(.)	2	-	2
CO5	3	2	-	-	-	-	-	-	-	-	-	2	-	2

SYLLABUS:

INTRODUCTION TO PROCESS PLANNING UNIT I

Introduction - Methods of process planning - Drawing interpretation - Material evaluation - Steps in process selection - Production equipment and tooling selection

PROCESS SELECTION UNIT II

Process selection - Technological choice - Specific component choice - Process flow choice -Factors affecting process selection - Machine capacity - Analysis of machine capacity - Process and equipment selection procedure - Determination of man, machine and material requirements - Simple problems - Selection of material - Jigs - Fixtures etc.

WORK STUDY UNIT III

Motive of work study - Concept of work content - Techniques to reduce work content - Method study - Procedure - Recording techniques used in method study - Micro motion study - Principles of motion economy - Therbligs - Simo chart - Cycle graph - Chrono cycle graph - Work measurement - Basic Procedures for the conduct of time study - Calculation of standard time - Simple problems -101/24

9

9

Ergonomics - Definition - Objectives - Applications -working environment - Work place layout - Other areas

UNIT IV MOTION STUDY

Goals of Motion Study – Time Study (Stopwatch Measurement) – Criticisms – Work Sampling – Learning Curve – Taylor vs. the Gilbreths – Direct Time Study Procedure – Case studies – Difference between Time Study and Motion Study

UNIT V MACHINING TIME CALCULATIONS

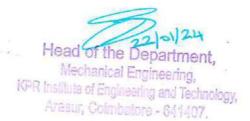
Elements of metal machining – Cutting speed – Feed – Depth of cut – Procedure for assigning cutting variables – Calculation of machining time for lathe operations – Calculation of machining time for operations on drilling machine – Machining time for shaping, planning, slotting, broaching and sawing operations – Face milling and slab milling operations – Timing for thread cutting – Estimation of total unit time – Simple problems

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods
				Total	45 Periods

TEXT BOOKS:

- 1. Adithan.M, "Process planning and Cost Estimation", 2nd edition, New Age International Publishers, 2015
- 2. Sinha B.P, "Mechanical Estimating and Costing", 2nd edition, Tata McGraw Hill Education, 2003


REFERENCES:

- 1. O.P Khanna, "Industrial Engineering & Management", 17th edition, Dhanpat Rai Publication, 2017
- Martand Telsang, "Industrial Engineering & Production Management", 1st edition, Sultan Chand & Sons, 2006

EVALUATION PATTERN:

	S				
Assessment I (100 Marks)		Assessme (100 Mar			
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments	End Semester Examinations
40	60	40 60 200		200	100
Total				40	60
				1	00

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

148

B.E. – ME – R20		Centr				PRIET
	PROFESSIONAL ELECTIVE	CO	UTSE	/*	/	;]
	PLANT LAYOUT AND MATERIALS HANDLING	* Coi	T	Р	L	с
U21MEP17	PLANT LATOOT AND MATLEM LET	3	0	0	0	3

ambe.

1).

PRE-REQUISITES:

U21ME401 – Manufacturing Technology – II

COURSE OBJECTIVES:

- To acquire knowledge about the importance of industrial layout and safety
- Identify the key factors for location decision and site selection
- To impart knowledge required on plant layout tools for better solute

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Interpret all types of plant layouts for better industrial layout design (Understand)

CO2: Identify the key factors for location decision and site selection (Understand)

CO3: Apply computer-based layout design (Apply)

CO4: Estimate cost and corresponding implementation activities in layout (Understand)

CO5: Analyze material handling systems in manufacturing firms (Apply)

CO-PO	MAPPING:	
-------	----------	--

POs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011	PO12	PSO1	PSO2
C01	-	3	-	-	-	-	2	-	-	-	-	-	1	-
CO2	-	3	2	-	-	-	-	-	-	-	-	-	1	-
CO3	-	-	-	-		3	2	2	-	17	-	-	3	-
CO4	-	2	3	-	-	3	2	2	-	-	-		-	-
CO5	-	-	-	-	-	3	-	2		-	-	-	-	-

SYLLABUS:

UNIT I PLANT LAYOUT

Plant Layout – Importance of Plant Location – Facilities Design Procedure, Principles of Plant layout and Types – Factors affecting layout – Methods, factors governing flow pattern – Travel chart – Analytical tools of plant layout – Layout of manufacturing shop floor – Repair shop – Services sectors and process plant – Evaluation and Improvement of layout

UNIT II PLANT LOCATION

Plant location – Need Factors – Comparison – Quantitative methods for evaluation – Types – Tools and techniques for layout design – Line balancing and sequence analysis concept – Site selection – Procedures – Factors affecting selection – Dynamic Nature of Plant Location

UNIT III COMPUTER AIDED PLANT LAYOUT

Data requirements – Mathematical programming procedures – Heuristics – CORE LAP – PLANET – MAT – CRAFT – Probabilistic Approach – Random selection (ALDEP) – Based sampling – Simulation – Graph Theory – Layout states – Scale effect – Criticism concerning Computer Aided Plant Layout

9

9

UNIT IV EVALUATION AND IMPLEMENTATION OF LAYOUT

Evaluating the Layout – Qualitative Evaluation Techniques – Efficiency indices – Cost Evaluation of Layout – Quantitative evaluation Techniques – Evaluation procedures – Making the alteration – Presenting the Layout to management – Displaying the Layout – Follow up – Approval – Reproducing the Layout – Installing the Layout

UNIT V MATERIAL HANDLING

Objectives – Principles – Types – Degree of mechanization – Unit load concept – Material Handling cost – Relationship between Material Handling and Plant Layout – Material Handling system Design – Specification of the Design – Analyzing an existing material Handling system. Basics of material handling selection – AGVS in material Handling – Packing

Contact Periods:

Lecture: 45 Periods Tutorial: Practical: – Periods Project – Periods Total 45 Periods

TEXT BOOKS:

- 1. S.C. Sharma, "Plant Layout and Materials Handling", 3rd edition, Khanna Publishers, 2015
- Mark A. Friend, James P. Kohn, "Fundamentals of Occupational Safety and Health", 6th edition by Government Institutes, 2014

REFERENCES:

- 1. Francis, "Facility Layout and Location: An analytical Approach", 2nd edition, Pearson Education, 2015
- 2. Sunderesh S. Heragu, "Facilities Design", 4th edition, CRC Press, 2016

EVALUATION PATTERN:

Assessment I (100 Marks)		Assessme (100 Mar				
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations	
40	60	40	60	200	100	
	То	tal	40	60		
ala Diau / Crau			100			

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

B.E. – ME – R20		R Institut	Aca	tre f dem urse	ick	PRIE
	PROFESSIONAL ELECTIVE	1 A	Cate	gory	PEC	;
	COMPUTER INTEGRATED MANUFACTURING	L	Т	Р	J	С
U21MEP18	COMPUTER INTEGRATED INARCHIEF COMPUTER	3	0	0	0	3

gineerin

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To demonstrate the application of computers in various aspects of manufacturing
- To acquire knowledge on design, proper planning, manufacturing cost and layout
- To familiarize in Group Technology (GT), cellular manufacturing, Shop Floor Control (SFC), Flexible Manufacturing System (FMS), Automated Guided Vehicle System (AGVS) and Industrial robots

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Articulate the fundamental concepts of CAD/CAM, lean, JIT production and automation (Understand)
- CO2: Apply the concept of CIM via design, process and resource planning, material requirement planning and shop floor control (Understand)
- CO3: Elaborate the concepts of group technology and cellular manufacturing (Apply)
- CO4: Estimate cost and corresponding implementation activities in lay Explain the concepts of Flexible Manufacturing System (FMS) and Automated Guided Vehicle System (AGVS) (Apply)

CO5: Discuss the fundamentals of robots and their industrial applications s (Apply)

CO - PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	P09	PO10	P011	PO12	PSO1	PSO2
CO1	3	1			-	-	-	-	-	-	-	-	2	-
CO2	3	1	-	-	-	-	-	-	-	-	-	-	2	-
CO3	3	1	-	-	-	-	-	-	-	-	122	-	2	-
CO4	3	1	-	-	-	-	-	-	-	-		-	2	-
CO5	3	1	-	-	-	-		-	-	-	-	-	2	-

SYLLABUS:

INTRODUCTION TO CAD AND CAM UNIT I

Brief introduction to CAD and CAM - Manufacturing Planning, Manufacturing control - Introduction to CAD/CAM - Concurrent engineering - CIM concepts - Computerised elements of CIM system -Types of production - Manufacturing models and metrics - Mathematical models of production performance - Simple problems - Manufacturing control - Simple problems - Basic elements of an automated system - Levels of automation - Lean production and Just - In - Time (JIT) production

PRODUCTION PLANNING AND CONTROL AND COMPUTERISED PROCESS 9 UNIT II PLANNING

Process planning - Computer Aided Process Planning (CAPP) - Logical steps in computer aided process planning - Aggregate production planning and Master Production Schedule (MPS) - Material

Requirement Planning (MRP) – Capacity planning- Control systems – Shop Floor Control (SFC) – Inventory control – Brief on manufacturing resource planning – II (MRP-II) & Enterprise Resource Planning (ERP)

UNIT III CELLULAR MANUFACTURING

Group Technology (GT) – Part families – Parts classification and coding – Simple problems in Opitz part coding system – Production Flow Analysis (PFA) – Cellular manufacturing – Composite part concept – Machine cell design and layout – Quantitative analysis in cellular manufacturing – Rank order clustering method – Arranging machines in a GT cell – Hollier method – Simple problems

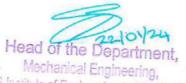
UNIT IV FLEXIBLE MANUFACTURING SYSTEM (FMS) AND AGVS

FMS – FMS Components – FMS application & benefits – FMS planning and control – Types of flexibility – Quantitative analysis in FMS – Simple problems. Automated Guided Vehicle System (AGVS) – AGVS application – Vehicle guidance technology – Vehicle management & safety

UNIT V INDUSTRIAL ROBOTICS

Introduction to robot – Robot anatomy and related attributes – Classification of robots – Robot control systems – End effectors – Sensors in robotics – Robot accuracy and repeatability – Simple problems Industrial robot applications – Robot part programming and languages – Economic analysis of robotics

Contact Periods:


Lecture:	45 Periods	Tutorial:	- Periods	Practical: – Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:

- Mikell.P. Groover, "Automation, Production Systems and Computer Integrated Manufacturing", 3rd edition, Prentice Hall of India, 2018
- Radhakrishnan P, Subramanyan S and Raju V., "CAD/CAM/CIM", 3rd edition, New Age Publication, 2020

REFERENCES:

- Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", 2nd edition, Prentice Hall India,2013
- Gideon Halevi and Roland Weill, "Principles of Process Planning A Logical Approach", 3rd edition, Springer Education, 2003
- Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", 3rd edition, Tata McGraw Hill Publishing Company,2019

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407 9

9

EVALUATION PATTERN:

10.0

Assessment I (100 Marks)		Assessme (100 Mar		Tetal Internal	End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	То	tal	40	60			
		Local de la composition de la			100		

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

Mechanical Engineering, PR Institute of Engineering and Technology Arasur, Colmbatora - 641407.

PROFESSIONAL ELECTIVE

U21MEP19		Category: PEC						
	LEAN SUPPLY CHAIN MANAGEMENT	L	т	Р	L	С		
		3	0	0	0	3		

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To learn the individual processes of supply chain management and their interrelationships within individual companies and across the lean supply chain
- Provide knowledge on the management components of lean supply chain management
- To know the tools and techniques useful in implementing lean supply chain management

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the framework and scope of supply chain networks and functions (Understand)

CO2: Discuss the various inventory management techniques (Understand)

CO3: Design a supply chain models using different tools (Apply)

CO4: Execute the designed supply chain models (Apply)

CO5: Design and execute the lean case studies in the real time application (Apply)

CO-PO MAPPING:

POs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PS02
C01	3	-	-	-	-	-	-	-	-	-	1		2	1
CO2	3	2	-	-	-	-	-	-	-	-	1	-	2	1
CO3	3	2	2	-		-	-	-	-	-	-	-	2	1
CO4	3	2	2	-	-	-	1	÷	-	-	1	- 2	2	1
CO5	3	3	2	-		-	-		-	-	1	4	2	1

SYLLABUS:

UNIT I LEAN SUPPLY CHAIN

Lean opportunities in supply chain and logistics – Examples of JIT in the supply chain – Competitive strategy – Logistics and customer value – Measuring logistics cost and performance

UNIT II INVENTORY MANAGEMENT

Traditional inventory management versus lean inventory management – Kanban sizing – WIP inventory: FIFO management – Lot sizing in lean – One-piece – Every part every interval – Lot sizing as part of scheduling – Reducing pipeline inventory: Kanban – Visual car – Inventory reduction through reducing lot sizes – Point of sales data

UNIT III LEAN SUPPLY CHAIN DESIGN

Principles – Lean layouts – Lean production schedules – Lean service – Traditional physical control of inventories – Traditional relationships packaging – Preparing an item for shipment – Overall warehouse setup and item locations. Contractor management: Selection of contractors – Induction – Onsite management – Risk management – Lean logistics: product availability and its effect on logistics – Collaboration: visibility and reliability – The impact of globalization – Enterprise resource

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407 9

9

Centre

Academ

Courses

Inst:

20

9

9

planning – Leveraging enterprise resource planning in the supply chain – Sales and operations planning – Lean supply chain tools for the perfect order

UNIT IV LEAN SUPPLY CHAIN EXECUTION

E-Commerce – QR – ECR – And CPFR – Collaborative planning – Forecasting – Replenishment – Vendor – Managed inventory – Other potential areas for collaboration – Future opportunities – Logistics of a global supply chain – Value stream mapping to identify waste – Areas to reduce waste policies and procedures – Relevant lean supply chain and logistics metrics – Balanced scorecard – Display and control metrics – Barriers to supply chain integration – Trends in the lean supply chain – Data analytics – Supply chain analytics and lean – Potential obstacles to lean thinking in the supply chain

UNIT V CASE STUDIES

Reverse logistics – Warehouse management using lean concept – Lean supply chain management of an automobile component manufacturing industry – Introducing lean concept in E- procurement

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	 Periods 	•
Leotaro.	101 0			Total:	45 Periods	

TEXT BOOKS:

- Sunil Chopra, Peter Meindl and Kalra., "Supply Chain Management, Strategy Planning and Operation", 6th edition, Pearson Education, 2010
- Paul Myerson, "Lean Supply Chain and Logistics Management", 1st edition, Tata McGraw Hill Education, 2012

REFERENCES:

- Robert Jacobs F., Richard B Chase "Operations and Supply Chain Management", 13th edition, McGraw Hill Education, 2012
- Martin Christopher, "Logistics and Supply Chain Management", 1st edition, Pearson Publications 2011
- Bill Kerber, Brian J Dreckshage, "Lean Supply Chain Management Essentials: A Framework for Materials Managers", 1st edition, CRC Press,2011

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	3		
Assessment I (100 Marks)		Assessme (100 Mar			End Semeste	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ		Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	То	otal	40	60		
			1	00		

*Roll Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

Head of the Department,

Mechanical Engineering, (PR Institute of Engineering and Technology, Aresur, Coimbatore - 6411.07

S PROFESSIONAL ELECTIVE	Centre for Academic Courses	
	Category: PEC	
TOTAL QUALITY MANAGEMENT	LTPLC	
	3 0 0 0 3	

PRE-REQUISITES:

U21MEP20

Nil

COURSE OBJECTIVES:

- To introduce the evolution of quality principles and practices.
- To emphasize on the quality management tools and techniques.
- To learn the standards of quality management system

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the quality principles of TQM (Understand)

CO2: Apply TQM principles for eliminating non-value-added activities in an organization (Apply)

CO3: Describe the QC tools for process capability study and process control (Understand)

CO4: Apply quality tools to detect and rectify the failures in the process/products (Apply)

CO5: Implement quality management system (ISO Standards) in the organization (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	2	-	-	-	-	-		-	-	-	1	-	-	3
CO2	2	-	-	-	-	-	-	-		-	1	-	-	3
CO3	2	2	-	-	-	-	-	-	-	-	1	-	-	3
CO4	2	2	-	-	8	87	-	-	-	-	1	-	-	3
CO5	2	2	-	-	-	-	2	-	-	-	1	-	1927	3

SYLLABUS:

UNIT I INTRODUCTION TO QUALITY STATEMENTS AND PRINCIPLES

Need and evolution of quality – Definition of quality- Important philosophies - Deming – Juran – Crosby – Ishikawa and Taguchi. Fundamentals of TQM and TQM framework. Barriers to TQM, Leadership – Quality council – Quality statements and quality planning

UNIT II TOTAL QUALITY MANAGEMENT PRINCIPLES

Customer focus – Customer satisfaction – Customer perception of quality – Customer complaints and customer retention – Employee Involvement – Motivation-Empowerment – Team and team work Supplier quality management – Supplier partnership – Supplier selection and supplier rating Continuous Process improvement – Juran trilogy – PDCA cycle – 5S – Kaizen and Re – Engineering Performance measures quality costs

156

9

PROCESS CONTROL UNIT III

Seven QC tools - New seven management tools - Statistical fundamentals - Normal Curve - Charts for variables and attributes - Process capability studies

TQM TOOLS AND TECHNIQUES UNIT IV

TQM tools - Benchmarking Process - Quality function deployment and house of quality - FMEA -Design FMEA and Process FMEA. Six sigma - Concepts - Methodology - Applications in manufacturing and service sectors - Total productive maintenance

PROJECT RESOURCE MANAGEMENT UNIT V

Need of ISO 9001:2015 - Elements - Implementation-documentation auditing and Registration Environmental management system - ISO14001:2015 Concept and Elements - Requirements and benefits. OSHAS 18000- concept - Requirements and benefits - Case studies

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods
Lecture.	401 611040			Total:	45 Periods

TEXT BOOKS:

- 1. Besterfield, D.H., Besterfield Michna,C, Besterfield- Sacre, M.Bester field, G.H.,& Urdhwareshe, H. "Total Quality Management", revised 3rd edition, Pearson Education, 2012
- James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th edition, 2. Cengage Learning,2012

REFERENCES:

- 1. Janaki Raman, Band Gopal.R.K., "Total Quality Management- Text and Cases", 2nd edition, Prentice Hall,2006
- Ismael Dambolena, Lawrence P. Carr, Ashok Rao, Robert J Kopp, "Total Quality Management: 2 Across functional perspective", 2nd edition, John Wiley and Sons, 2012.
- 3. Adam, E. E.,, Jr., & Swamidass, P. M., "Assessing operations management from a strategic perspective", 2nd edition, Journal of Management, 2015

EVALUATION PATTERN:

Assessme (100 Mark	A CONTRACTOR OF	Assessme (100 Mar			End Someste	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations 100 100	
40	60	40	60	200	100	
	То	tal	- [40	60	
				1	100	

157

a

9

PROFESSIONAL ELECTIVE

			Cate	gory	PEC	2
U21MEP21	PROJECT MANAGEMENT	L 3	т	Р	L	с
		3	0	0	PEC	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce phases involved in project management
- To acquire knowledge on project risk analysis and planning
- To apply project and resource management tools to increase productivity of an organization

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the steps involved in project management (Understand)

CO2: Identify various risks associated with the project and manage it effectively (Understand)

CO3: Prepare a detailed project plan addressing its components (Apply)

CO4: Effectively utilize the resources of organization by applying project management techniques (Apply)

CO5: Apply resource management in the allocation of projects (Apply)

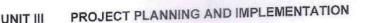
CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	3	-	-	3
CO2	2	-	-	-	-	-	÷	÷.	-	-	3	-	-	3
CO3	2	3	1	-	-	-	-	-	-	2	3		-	3
CO4	2	3	1	-	1	-	-	-	-	2	3	1	-	3
CO5	2	3	1	-	1	-	2	-	-	2	3	1	-	3

SYLLABUS:

UNIT I INTRODUCTION AND PROJECT INITIATION

9


9

Introduction to – Project and – Project management – Projects in contemporary organization – Project lifecycle – Project initiation – Project evaluation methods and techniques – Project selection criteria – Project design – Work breakdown structure

UNIT II RISK ANALYSIS

Sources of risk: Project Specific – Competitive – Industry specific – Market and international risk – Perspectives of risk – Risk analysis: sensitivity analysis – Scenario analysis – Break even analysis – Simulation analysis – Decision tree analysis – Managing / mitigating risk – Project selection under risk

Project planning – Importance – Functions – Areas of planning – Planning objectives and policies – Steps in planning process – WBS – capital requirements – Budgeting and cost estimation – Feasibility analysis – Creation of project plan – Project implementation: pre – Requisites – Forms of project organization – Project responsibility matrix – Project leadership – Communication and soft skills

UNIT IV PROJECT MANAGEMENT TECHNIQUES

Project scheduling – Network construction – Estimation of project completion time – Identification of critical path – PERT / CPM / PDM – Network techniques for manufacturing critical chain methods – Using software such as MS project / primavera for CPM/PERT/PDM – Scheduling using software such as MS project / primavera for project monitoring and control

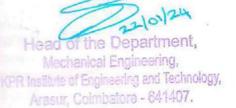
UNIT V PROJECT RESOURCE MANAGEMENT

Crashing of project network – Complexity of project scheduling with limited resources – Resource allocation – Resource leveling – Resource smoothing – Project resource management – Project risk management using ERP in projects

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical:	- Periods	Project	- Periods
Lootalor					Total	45 Periods

TEXT BOOKS:


- 1. Prasanna Chandra, "Projects: Planning, Analysis, Financing, Implementation and Review", 8th edition, Tata McGraw Hill Education,2017
- 2. Narendra Singh, "Project Management and Control", 6th edition, Himalaya Publishing,2016

REFERENCES:

- 1. Jerome, D. Weistand Ferdinand K. Levy, "A Management Guide to PERT/CPM", 3rd edition, Prentice Hall of India,2005
- John M Nicholas, "Project Management for Business and Technology: Principles and Practice", 3rd edition, Pearson Education,2008
- Robert K. Wysocki, Robert Back Jr. and David B. Crane, "Effective Project Management", 8th edition, John Wiley and Sons,2019

	ssignment / ase Study / Seminar /	Assessme (100 Mar			End Semest	
*Individual Assignment / Case Study / Seminar / Project / MCQ	and a second second second	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semeste Examination 100 100	
40	60	40	60	200	100	
	То	tal		40	60	
				1	00	

EVALUATION PATTERN:

-

Q

8.E. – ME – R202	/	olon Cel	ntre	fer		PRIE
	PROFESSIONAL ELECTIVE	-	ader ours		100	nam Beyon
		14	Cate	gory	PEO	C
U21MEP22	GAS DYNAMICS AND JET PROPULSION	L	mbai	P	L	С
		3	0	0	0	3

ineor

PRE-REQUISITES:

- U21ME301 Engineering Thermodynamics
- U21ME304 Fluid Mechanics & Applications

COURSE OBJECTIVES:

- To study the concept of a compressible flow through ducts with friction and heat transfer
- To discuss the shock wave and the variation of flow properties across the shock wave.
- To identify and elucidate various types of aircraft and rocket engines

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Apply the governing equations for compressible flow to flow through variable area ducts. (Apply)

CO2: Analyze the effects of friction on compressible flows. (Apply)

CO3: Analyze the effects of heat transfer on compressible flows (Apply)

CO4: Predict the occurrence of shocks and calculate property changes across a shock wave (Apply)

CO5: Utilize gas dynamic principles in aircraft and Rocket propulsion performance analysis (Apply)

CO - PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	1	1	-	-	-	-	-	-	-	-	2	-
CO2	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO3	3	3	2	2	-	-	-	-	-	-	-	-	2	-
CO4	3	3	1	1	(#)	-	-			-	-	-	2	-
CO5	3	3	. 1	,1		-	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION TO COMPRESSIBLE FLOW

Basic governing equations of compressible fluid – Stagnation properties – Speed of sound and Mach number – Various regions of flow – Reference velocities – Effect of Mach number on compressibility – 1D Isentropic flow through variable area ducts – Nozzle and Diffusers – Use of Gas tables

UNIT II FANNO FLOW

Compressible flows through constant area ducts with Friction (Fanno flow) – Fanno curves and flow equations – Variation of flow parameters – Isothermal flow with friction – Fundamental equations – Variation of flow properties – Tables and charts – Applications

UNIT III RAYLEIGH FLOW

Compressible flows through constant area ducts with heat transfer (Rayleigh flow) – Rayleigh curves – Rayleigh flow relations – Variation of flow properties – Maximum heat transfer – Tables and charts

- Applications

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

160

9

9

9

9

COMPRESSIBLE FLOW WITH SHOCK WAVES UNIT IV

Wave motion and its Basics - Governing equations of flow across the normal and oblique shock waves - Variation of flow parameters across the waves - Prandtl - Meyer relations - Use of table and charts

AIRCRAFT AND ROCKET PROPULSION UNIT V

Aircraft engines and its types - Aircraft propulsion theory - Ramjet and Pulsejet engine - Rocket propulsion - Rocket engines and its types - Liquid and Solid propellant Rocket engines - Rocket propulsion theory - Rocket applications and space flights

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods
Lootaro.				Total	45 Periods

TEXT BOOKS:

- 1. S.M. Yahya., "Fundamentals of Compressible Flow with Aircraft and Rocket propulsion", 6th edition, New Age Publisher, 2019
- John D Andserson., "Modern Compressible flow", 3rd edition, McGraw Hill Education, 2012 2.

REFERENCES:

- 1. Robert D.Zucker, Oscar Biblarz., "Fundamentals of Gas dynamics", 2nd edition, John Wiley & Sons,2011
- James John, Theo Keith., "Gas dynamics", 3rd edition, Dorling Kindersley, 2010 2.
- 3. E. Rathakrishnan., "Gas dynamics", 2nd edition, Prentice Half of India, 2008

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	5			
Assessme (100 Mark		Assessme (100 Mar			End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	End Semester Examinations 100 60		
40	60	40	60	200	100		
	То	tal		40	60		
				1	00		

124 Head of the Department, Arasur, Coimbatore - 641407.

Acade:

		Category: PEC						
U21MEP23	HEATING, VENTILATION AND AIR CONDITIONING		Р	с				
		3	0	0	3			

PRE-REQUISITES:

- U21ME301 Engineering Thermodynamics
- U21ME403 Thermal Engineering

COURSE OBJECTIVES:

- To learn the fundamental principles and applications of HVAC
- To study and apply the various air Conditioning systems and its heat load estimation
- To apply various auxiliary systems and to draft the HVAC subsystems

COURSE OUTCOMES:

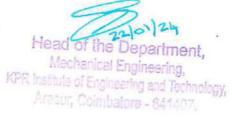
Upon completion of the course, the student will be able to

- CO1: Illustrate the fundamental principles and applications of Heating Ventilation and Air Conditioning (Apply)
- CO2: Describe the basic components of an HVAC system and basics of Psychrometric processes (Apply)
- CO3: Calculate heat load for air conditioning systems used for various purposes (Apply)
- CO4: Implement the suitable air distribution systems and hydronic system for improving efficiency (Apply)

CO5: Draft the HVAC system as per the codes and standards to meet various applications (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	-	ω.	-	-		-		-	-	-	-	-	-
CO2	3	-	-	·	-	-	-	-	-	-	-	-	-	-
CO3	3	2	2	- 12	-	-	-	-	-	-		- '	3	-
CO4	3	3	2	-	-	-	-	-	-	-	-	-	3	-
CO5	3	3	2	-	3	6	-	-	-	-	-	-	3	-


SYLLABUS:

UNIT I INTRODUCTION TO HVAC

Introduction – Scope of Modern HVAC – Objective of HVAC – Air Conditioning processes – Basic Refrigeration cycle – Sensible and Latent heat – Refrigeration units – Codes and standards – Environment for human comfort – Application of HVAC systems

UNIT II AIR-CONDITIONING SYSTEMS AND PSYCHROMETRY PROCESSES

HVAC basic components – Working of HVAC system – Psychrometric processes – Psychrometric Chart – Basic Air Conditioning system – Classification – Window A/C system – Split A/C system – Ductable split A/C system – Package A/C system – VRF/VRV system – Central Air Conditioning system – Chilled Water system – Air water system – Direct Refrigerant system – Indirect Refrigerant system

9

9

÷.,

HEAT LOAD ESTIMATION UNIT III

Sources of Heat - Heat Load Formula - Finding U value for Walls, Roof, Glass - Determining temperature difference value for Walls, Roof, and Glass - Determination of Heat Gains - Ventilation requirements - Infiltration Gains - Heating load calculations - ASHRAE heat load calculation Excel Sheet 9

AIR DISTRIBUTION SYSTEM AND HYDRONIC SYSTEM UNIT IV

Duct design methodologies - Gauge selection for Sheet Metal - Selection of air terminals, dampers, filters - Pressure drop estimation - Duct Materials and Insulation materials - Duct Routing - Basic Hydronic system, chiller, pumps, valves - Types and arrangements of Piping - Routing and sizing of Pumping system - TDH, NDSH and Cavitation

DRAFTING OF HVAC SYSTEMS UNIT V

Introduction to drafting using AutoCAD - Symbols and code in HVAC designing - Study and preparation of floor drawings - Conventional AC systems drawing - Ventilation system Drawings -Ductable AC system Drawings - Section drawings

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Periods
Leotare.				Total	45 Periods

TEXT BOOKS:

- 1. Samuel C. Sugarman, "HVAC Fundamentals", 3rd edition, Fairmount Press, 2016
- 2. Kreider, Jan F, "Handbook of heating ventilation and air conditioning", 3rd edition, CRC Press, 2013

REFERENCES:

- 1. Arthur A Bell, "HVAC Equations, Data and Rules of Thumb", 2nd edition, McGraw Hill Education.2007
- Herbert W. Stanford, "HVAC Water Chillers and Cooling Towers Fundamentals, Application, and 2 OperationII", 2nd edition, CRC press,2011
- A. Vedavarz, S. Kumar & Hussain, "HVAC Handbook of Heating Ventilation and AC",4th edition, 3 Industrial press,2006

	Contin	uous Internal As	sessments	5	_	
Assessme (100 Marl	Constraint and the second s	Assessme (100 Mar		Total Internal	End Semester	
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations	
40	60	40	60	200	100	
	Тс	otal	0.00	40	60	
					100	

EVALUATION PATTERN:

the Department, Head of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

q

PROFESSIONAL ELECTIVE

		1001	Cate	gory:	PEC	;
U21MEP24	ADVANCED INTERNAL COMBUSTION ENGINES	L	т	Р	L	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To familiarize with the engine fuel and air supply systems, electronic injection systems in modern automotive engines
- To make the students understand about the combustion phenomenon of SI and CI engines, engine pollutants
- · To teach the students on production and utilization of alternative solid, liquid and gaseous fuels

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain various fuel supply systems used for IC engines (Understand)

CO2: Discuss the concepts of combustion of IC engines (Understand)

CO3: Select suitable method to control IC engine emission formation (Understand)

CO4: Explain various types and possibility of alternate fuels can use in IC engine (Understand)

CO5: Discuss the new trends of IC engine technology (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	1	1			-	-	-	-	-	-	-	2	-
CO2	3	1	1	-		870	-	-	-	-	-	-	2	
CO3	3	2	2	-		-	2	-	-	-	-	-	2	-
CO4	3	2	2	-	-	-	2	-	-	-	-	-	2	-
CO5	3	2	2	-	1.00	-	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I FUEL SUPPLY SYSTEM

Introduction – Carburetion – Mixture requirements – Simple carburetor compensation devices high altitude fuel supply device – Electronic injection system CI engine – Injection systems – Mechanical and electronic systems

UNIT II COMBUSTION IN SI AND CI ENGINES

Ignition – Stages of combustion – Normal and abnormal combustion – Factors affecting knock – Combustion chambers – Fuel spray behaviour – Spray structure spray penetration – And evaporation – Air motion – Stages of combustion – Factors affecting combustion – Direct and indirect injection systems – Combustion chambers

9

9

POLLUTANT FORMATION AND CONTROL UNIT III

Pollutant - Sources - Formation of Carbon Monoxide Unburnt Hydrocarbon Oxides of Nitrogen Smoke and Particulate matter - Methods of controlling Emissions - Catalytic converters Selective Catalytic Reduction and Particulate Traps - Methods of measurement - Emission norms and Driving cycles 9

ALTERNATIVE FUELS UNIT IV

Alcohol – Hydrogen Compressed Natural Gas – Liquefied Petroleum Gas and Bio Diesel – Properties - Suitability - Merits and Demerits - Engine Modifications

RECENT TRENDS UNIT V

Air assisted Combustion – Homogeneous charge compression ignition engines – Variable Geometry turbochargers - Common Rail Direct Injection Systems - Hybrid Electric Vehicles - NOx Adsorbers Onboard Diagnostics

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods	
Lootaro					Total	45 Periods	

TEXT BOOKS:

- 1. J.B Heywood, "Internal Combustion Engine Fundamentals", 2nd edition, Tata McGraw Hill Education,2018
- 2. V. Ganesan, "Combustion Engines", 2nd edition, Tata McGraw Hill Education, 2002

REFERENCES:

- 1. Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines", 2nd edition, Dhanpat Rai & Sons,2007
- 2. Duffy Smith, "Auto Fuel Systems", 2nd edition, The Good Heart Willcox Publication, 2002
- 3. Eric Chowenitz, "Automobile Electronics", 2nd edition, Butterworth Heinemann,2005

EVALUATION PATTERN:

Assessme (100 Mark	nti	uous Internal As Assessme (100 Mar	ent II		End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	Тс	tal	STORIES.	40	60
				1	00

the Department, Head of Mechanical Engineering, KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

165

9

PROFESSIONAL ELECTIVE

			Cate	gory	: PEO	C
U21MEP25	COMPUTATIONAL FLUID DYNAMICS	L	т	Ρ	L	С
	4	3	0	0	0	3

PRE-REQUISITES:

- U21ME301 Engineering Thermodynamics
- U21ME304 Fluid Mechanics and Applications

COURSE OBJECTIVES:

- To provide the basics of partial differential equation and solving equations.
- To provide the concepts and application of governing equations.
- To gain some basic knowledge about programming of numerical methods.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Explain the mathematical characteristics of partial differential equations (Understand)
- CO2: Classify and computationally solve Euler and Navier Stokes equations (Understand)
- CO3: Make use of the concepts like accuracy, stability, consistency, of numerical methods governing equation (Apply)
- CO4: Identify and implement numerical techniques for space and time integration of partial differential equation (Apply)
- CO5: Demonstrate basic skills on programming of numerical methods used to solve the Governing equations (Apply)

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	1	1	1	-	-	-	-	-	-	-	1.	1	-
CO2	3	2	2	1	-	-	-	-	-	-	-	-	1	-
CO3	3	3	2	1	-	-	-	-	-	-	1.5	-	1	-
CO4	3	3	2	1	-	-	-	-	9 4	-	-	-	1	-
CO5	3	3	2	1	2	-	-	-	-	-	-	-	1	-

CO-PO MAPPING:

SYLLABUS:

UNIT I INTRODUCTION TO CFD AND GOVERNING EQUATIONS

Need of CFD as tool – Role in R&D – Continuum, material or substantial derivative or total derivative – Gradient – Divergence and curl operators – Linearity – Principle of Superposition – Derivation of Navier – Stokes equations in control volume (integral form) and partial differential form – Euler equations (governing inviscid equations) – Mathematical classification of PDE (Hyperbolic – Parabolic, Elliptic) – Method of characteristics – Introduction to Riemann Problem and Solution Techniques

UNIT II ONE-DIMENSIONAL EULER'S EQUATION

Conservative – Non – Conservative form and primitive variable forms of Governing equations – Eigenvalues and Eigenvectors of Flux Jacobian – Decoupling of Governing equations – Introduction of characteristic variables – Relation between the two non – Conservative forms – Conditions for

9

a

9

Deriodo

genuinely nonlinear characteristics of the flux Jacobian - Introduction to Turbulence Modeling: Derivation of RANS equations and k - Epsilon model 9

REPRESENTATION OF FUNCTIONS ON COMPUTER UNIT III

Need for representation of functions - Box Function - Hat Function - Representation of sinx using hat functions: Aliasing, high frequency - Low frequency - Representation error as a global error. Derivatives of hat functions - Haar functions - Machine Epsilon - Using Taylor series for representation of Derivatives 9

FINITE DIFFERENCE METHOD UNIT IV

Applied to Linear Convection equation - Laplace Equations - Convection Diffusion equations -Burgers equations, modified equations Explicit methods and Implicit methods - As applied to applied to linear convection equation - Laplace equations - Convection diffusion equation FTCS, FTFS,FTBS,CTCS - Jacobi Method, Gauss - Siedel - Successive Over Relaxation Method - TDMA, Von Naumann stability (linear stability) analysis - Upwind Method in Finite Difference method

FINITE VOLUME METHOD UNIT V

Introduction finite volume method - Finding the flux at interface - Lax - Friedrichs Method, Lax -Wendroff Method - Two - Step Lax - Wendroff Method and Mac Cormack Method. Flux Splitting Method Steger and Warming - VanLeer, Roe's Method and finding Roe's Averages - Solving simple problem using ANSYS FLUENT

Contact Periods:

Lecture:	45 Periods	Tutorial:	Practical: - Periods	Project	- Perious
Leotaro.				Total	45 Periods

TEXT BOOKS:

- 1. HK Versteeg," Introduction to Computational Fluid Dynamics", 2nd edition, Prentice Hall of India,2007
- John Anderson, "Computational Fluid Dynamics", 2nd edition, Tata McGraw Hill Education, 2017 2

REFERENCES:

- 1. Rathakrishnan. E., "Gas Dynamics", Prentice Hall of India, 2001. Pletcher, R. H., Tannehill, j. C., Anderson, d., "Computational fluid mechanics and heat transfer", 3rd edition., CRC Press,201
- Moin, p., "Fundamentals of engineering numerical analysis", 2nd edition, Cambridge University 2. press,2010
- 3. Niyogi, "Indroduction to Computational fluid dynamics", 2nd edition, Pearson Education, 2012

EVALUATION PATTERN:

	Contir	uous Internal As	ssessments	\$	_	
Assessme (100 Mari		Assessm (100 Ma		T to be between a	End Semeste	
(100 Marks) *Individual Assignment / Case Study / Seminar / Project / MCQ		*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	Г	otal		40	60	
					100	

Mechanical Engineering,

KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

	PROFESSIONAL ELECTIVE	Centre for KPRIET
U21MEP26	POWER PLANT ENGINEERING	Category: PEC
		3 0 0 0 3

engineori

PRE-REQUISITES:

- U21ME301 Engineering Thermodynamics
- U21ME405 Thermal Engineering

COURSE OBJECTIVES:

- To impart knowledge on the layouts of steam, diesel and gas power plants.
- To inculcate the working principle of nuclear, hydroelectric and non-conventional power plants.
 To familiarize with the calculation of power plant economics.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss layout of the steam power plant along with their components (Understand)

CO2: Describe the working of the diesel power plant and gas turbine power plant (Understand)

CO3: Explain the types of nuclear reactors and working of the nuclear power plant (Understand)

CO4: Discuss the working of hydroelectric and nonconventional power plants (Understand)

CO5: Analyze the economics of power plants (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PS02
CO1	3	-	-	-	-	-	2	-	-	-	-	-	2	-
CO2	3	-	-	-	-	-	2		-	-	-	-	2	-
CO3	3	-	-	-	-	-	2	•	-	-	-	-	2	-
CO4	3	-	-	-	-	Ξ	2	-	4	-	-	-	2	-
CO5	3	-	-		-	-	2	-	-	-	2	-	2	-

SYLLABUS:

UNIT I STEAM POWER PLANTS

Layout of steam power plant – Components – Types of boilers – Fire tube and water tube boilers – High pressure and supercritical boilers – Fluidized bed boiler – Waste heat recovery boilers – Boiler mountings and accessories – Heat exchangers – Feed water heaters – Super heaters – Preheaters – Economizer – Condenser – Cooling tower – Coal handling – Combustion equipment and firing methods – Mechanical stokers – Pulverized coal firing systems – Cyclone separator – Ash handling systems – electrostatic precipitator – Forced draft and induced draft fans – Site selection

UNIT II DIESEL AND GAS TURBINE POWER PLANTS

Layout of diesel power plant – Components – Subsystems – Starting and stopping – Fuel supply – Lubricating system – Cooling system – Supercharging – Constraints in operating range – Heat balance – Site selection – Layout of gas turbine power plant – Components – Open and closed cycles – Intercooling – Reheating and regenerating – Combined cycle power plant types – Site selection

9

NUCLEAR POWER PLANTS UNIT III

Principles of nuclear energy - Energy from nuclear reactions - Layout of nuclear power plants -Components - Nuclear reactors - Boiling water reactor - Pressurized water reactor - Pressurized heavy water reactor - Gas cooled reactor - Liquid metal cooled reactor - Canada Deuterium - Uranium reactor - Fast breeder reactor - Reactor materials - Radiation shielding - Nuclear waste disposal -Site selection 9

HYDROELECTRIC AND NON-CONVENTIONAL POWER PLANTS UNIT IV

Layout of hydroelectric power plant - Components - Classification of hydroelectric power plants and their applications - Selection of prime movers - Governing of turbines - Site selection - Introduction to non - Conventional power plants (wind turbines - Geothermal plants - Tidal power plants - Biogas plants - OTEC plants)

ECONOMICS OF POWER PLANTS UNIT V

Plant load factor and utilization factor - Plant economics - Cost of electrical energy - Fixed and operating costs - Energy rates - Types of tariffs - Load distribution - Load curves - Energy conservation - Comparison of economics of various power plants

Contact Periods:

Lecture:	45 Periods	Tutorial:	-	Practical: - Periods	Project – Penous
Leotare.					Total 45 Periods

TEXT BOOKS:

- 1. R.K. Rajput, "A Text Book of Power Plant Engineering", 5th edition, Laxmi Publication, New Delhi, 2019
- 2. EI-Wakil M M, "Power Plant Technology", 1st edition, Tata McGraw Hill,2017

REFERENCES:

- P. K. Nag, "Power Plant Engineering", 4th edition, Tata McGraw Hill Education,2015
 R.K.Hegde, "Power Plant Engineering", 1st edition, Pearson Education,2015
- 3. Arora S C and Domkundwar S, "Power Plant Engineering", 8th edition, Dhanpat Rai,2016

EVALUATION PATTERN:

	Contir	nuous Internal As	ssessments	i	_		
Assessment I (100 Marks)		Assessm (100 Ma			End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	Т	otal	40	60			
					100		

Mechanical Engineering, Arasur, Coimbetore - 641407.

169

9

9

Deviada

engineering	
and for	2
Centre for Academic	KPRIET
Courses 2	Learn Beyond

PROFESSIONAL ELECTIVE

U21MEP27	* Coi	mbat	Cate	gory:	PEC	;
	RENEWABLE ENERGY RESOURCES NAD SYSTEMS	L	т	Р	L	C
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To emphasize the importance of using various renewable energy systems in the present energy scenario
- To impart the knowledge on the working of solar energy, wind energy and small hydro systems
- To inculcate the knowledge on ocean energy and biomass systems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the energy scenario and the importance of renewable energy systems (Understand)

CO2: Discuss the working of solar thermal and photovoltaic systems (Understand)

CO3: Describe the components of wind energy and small hydro energy systems (Understand)

CO4: Explain the technology to generate energy through ocean energy conversion (Understand)

CO5: Describe the methods of generating energy from the biomass (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	-	-	-	-	-	2	+	-	-	-	-	2	-
CO2	3	-	-	-	-	-	2	-	-	-	-	-	2	-
CO3	3	-	-	-	-		2	-	-	-	-	-	2	-
CO4	3	-	-	-	-	143	2	-	-	-	-	-	2	-
CO5	3	-	-		-	-	2	-		-	-	-	2	-

SYLLABUS:

UNIT I INTRODUUTION TO RENEWABLE ENERGY RESOURCES

Energy chain and common forms of usable energy – World energy status – Energy scenario in India – Classification of energy resources; conventional energy resources – Availability and their limitations; Renewable energy resources – Classification – Needs – Advantages and limitations – Applications

UNIT II SOLAR ENERGY SYSTEMS

Introduction to solar energy – Energy from Sun – Spectral distribution of solar radiation – Instruments for measurement of solar radiation; Solar thermal collectors – Flat plate collectors – Evacuated tubes – Concentrators – Applications – Solar photovoltaic systems – Physics of solar cells – Characteristics of cells and module – Performance parameters – Balance of system (BoS) – Types of photovoltaic systems – Applications

the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

170

9

9

WIND ENERGY AND SMALL HYDRO POWER SYSTEMS UNIT III

Principles of wind power - Wind turbine operation - Site characteristics - Selection of components -Types of wind turbines - Power regulation - Various methods of control - Design principles of wind turbine blades - Wind farms - Off shore wind farms - Solar wind hybrid energy systems - Introduction small hydro power systems - Types - System components - Discharge curve and estimation of power potential - Turbines for small hydro power plants

OCEAN ENERGY SYSTEMS UNIT IV

Tidal energy - Principle of tidal power - Components of tidal power plant (TPP) - Classification of tidal power plants – Advantages and limitations of TPP – Ocean Thermal Energy Conversion (OTEC): principle of OTEC system - Methods of OTEC power generation - Open cycle (Claude cycle) -Closed cycle (Anderson cycle) and hybrid cycle (block diagram description of OTEC); site - Selection criteria - Bio - Fouling - Advantages and limitations of OTEC

ENERGY FROM BIOMASS UNIT V

Biomass fuels - Concepts and systems - Biomass production - Energy plantations - Biomass resources and processing - Environmental factors; Pyrolysis - Fixed bed and fast pyrolysis -Gasification and liquefaction - Types of gasifiers; Bioconversion: biogas - Fermentation and wet processes; Biofuels: Manufacturing methods and properties

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
Lootaro					Total	45 Periods

TEXT BOOKS:

- 1. Rai G D, "Non-Conventional Sources of Energy", 6th edition, Khanna Publishers, 2017
- 2. D.P.Kothari, K.C.Singal, Rakesh Ranjan, "Renewable Energy Sources and Emerging Technologies", 2nd edition, Prentice Hall of India, 2011

REFERENCES:

- 1. Fang Lin Luo, Hong Ye, "Renewable Energy Systems: Advanced Conversion Technologies and Applications", 1st edition, CRC Press, 2012
- John.A.Duffie, William A.Beckman, "Solar Engineering of Thermal Processes", 4th edition, John 2 Wiley & Sons 2013
- 3. Bent Sorensen, "Renewable Energy", 5th edition, Academic Press, 2017

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	3	
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
Total				40	60
				1	00

the Department. chanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

q

BCS	Institute or		e for emic	(KF	PRIET
PROFESSIONAL ELECTIVE	(3)	Coimi	1	*	im Beyond
			gory:	PEC	:
TURBOMACHINES	L	т	Р	L	С
	3	0	0	0	3

nineerin

PRE-REQUISITES:

U21MEP28

- U21ME304 Fluid Mechanics and Applications
- U21ME403 Thermal Engineering

COURSE OBJECTIVES:

- To acquire the knowledge on the operation of turbomachine
- To develop the ability to analyze and design various types of turbomachine
- To Study the performance characteristics of turbomachine

COURSE OUTCOMES:

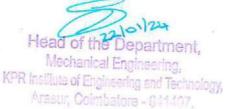
Upon completion of the course, the student will be able to

- CO1: Estimate the performance characteristics of turbomachine (Understand)
- CO2: Interpret the flow and energy transfer mechanism in radial flow (Apply)
- CO3: Design axial turbine impellers using airfoil theory, vortex theory, cascade effects and dimensionless parameters (Apply)
- CO4: Apply noise control techniques, material selection and speed/throttling control strategies for turbomachines (Apply)

CO5: Calculate the velocity and flow coefficients of turbine (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	-	1	-
CO3	3	2	1	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	1	-	-	-	-	-	-	-	-	-	1	_
CO5	3	2	1	-	-	-	-	2	-	-	-		-	-


SYLLABUS:

UNIT I PRINCIPLES OF TURBO-MACHINERY

Introduction to turbo-machines – Classification of turbo-machinery – Transfer of energy to fluids – Energy transfer between a fluid and a rotor – Euler turbine equation – Components of energy transfer – Performance characteristics – Fan laws – Dimensionless parameters – Specific speed – Selection of centrifugal – Axial – And mixed flow machines

UNIT II RADIAL FLOW MACHINES

Radial flow pumps – Compressors – Blowers and fans – Theoretical characteristic curves – Euler characteristics and Euler velocity triangles – losses and hydraulic efficiency – Volute – diffusers – Leakage – disc friction – and mechanical losses – Multi – vane impellers of impulse type – Design of radial flow impellers

172

9

UNIT III	AXIAL FLOW	MACHIN	ES		9
Axial flow t	fans – Rotor de surging and s less parameters	esign – air talling – M s Efficiency	foil theory – /ixed flow im and utilizatio	vortex theory – and casca pellers – Axial flow pump n factor in turbo – machine	ry – Design of axial flow
UNIT IV	TESTING AN	D CONTR	OL OF FANS	AND BLOWERS	9
Fan testin	g – Noise cont ontrol at discha	rol – Mate rge and at	rials and con inlet	nponents – Blower regula	
UNIT V	TURBINES				9
Radial flow Impulse Tu		ard flow tu	rbines for con	npressible fluids – Velocity	and flow coefficients –
Contact P	Periods:				
Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project – Periods
Lootalo.					Total 45 Periods

TEXT BOOKS:

1. Venkanna B.K., "Fundamentals of Turbo Machinery", 4th edition, Prentice Hall of India, 2011

2. Yahya, S.M., "Turbines compressors and fans", 4th edition, Tata McGraw Hill Education, 2011

REFERENCES:

- 1. S. Larry Dixon and Cesare Hall., "Fluid Mechanics and Thermodynamics of Turbomachinery", 7th edition, Academic Press, 2019
- 2. A. Srinivasan., "Turbomachine: Design and Performance Analysis", 2nd edition, CRC Press,2018
- 3. S.B. Pope., "Turbulent Flows", 3rd edition, Cambridge University Press, 2020

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	5	
Assessment I (100 Marks)		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
1	То	otal		40	60
				1	00

of the Department, lead Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 64'1407.

24

9

PROFESSIONAL ELECTIVE

U21MEP29			Cate	gory	: PEC	2
	AUTOMATION IN MANUFACTURING	L	т	Р	L	с
		3	0	0	0	3

PRE-REQUISITES:

U21ME401 - Manufacturing Technology - II

COURSE OBJECTIVES:

- To perform a sequence of automated or mechanized assembly operations by logic control and associated technologies
- To apply the concept of automation and data monitoring using Arduino in industries
- To enhance the knowledge on CAE in manufacturing

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the process of automation and types (Understand)

CO2: Suggest the Programmable Logic Controllers to automate machine (Understand)

CO3: Apply the knowledge on Automated Material handling equipment's (Apply)

CO4: Perform the automation of machine using ARDUINO (Apply)

CO5: Simulate casting using CAE (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	2		-1	-	-	-	12	-	-	-	2	-
CO2	1	1	2	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO4	3	3	2	-	-	-		-	-	-	-	-	2	-
CO5	3	3	2	-	-	- 1		-	-	-	-	-	2	

SYLLABUS:

UNIT I INTRODUCTION TO AUTOMATION

Principles and Components of industrial automation systems and their functionalities – Levels of automations – Fundamentals of manufacturing – Production System Facilities – Manufacturing support systems – Different types of manufacturing systems – Automation in Production Systems – Manufacturing Operations

UNIT II CONTROLLERS FOR INDUSTRIAL AUTOMATION

Industrial logic Control Systems – Mechanical – Electrical – Pneumatic – Electronic and Hybrid systems – Programmable Logic Controllers – Architecture – Different types of I/O modules – Interfacing real world devices with PLC – Different methodologies and strategies adopted for logic development – Basics of HMI and SCADA systems

UNIT III MANUFACTURING AUTOMATION

Automated flow lines – Buffers – Part feeding systems – Quantitative analysis of transfer lines and assembly systems – Material handling – AGV – ASIRS – FMS layout configurations and benefits of

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407. 9

9

9

FMS - Automated inspection - Quality Control Systems - Traditional and Modern Quality Control Methods - SPC Tools - Shop - Floor Control - Automated data collection - Bar codes - Optical character recognition - Vision or image processing - Radio frequency identification - Magnetic identification - Voice technology - Comparison q

DATA MONITORING USING ARDUINO UNIT IV

Basic structure - Input / Output processing - Programming - Mnemonics Timers - Internal relays and counters - Analog - To - Digital (A/D) and Digital - To -Analog (D/A) Conversion - Analog input / output - Programming and interfacing with Sensors in manufacturing applications - Design - Develop and integrate the sensors to interface with Arduino

APPLICATION OF CAE IN MANUFACTURING UNIT V

Simulation of molten metal flow using CAE Techniques - Solidification process in casting - Analysis of forging process using CAE - Problem solving using CAE packages and softwares used in foundries - linterpretation of results

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	 Periods
Lootaro.					Total	45 Periods

TEXT BOOKS:

- 1. Groover, M P, "Automation, Production systems and Computer Integrated Manufacturing Systems", 2nd edition, Prentice Hall of India, 2015
- 2. Frank Lamb, "Industrial Automation", 2nd edition, Tata McGraw Hill Education, 2013

REFERENCES:

- 1. Kesheng Wang Yi Wang Jan Ola Strandhagen and Tao Yu, "Advanced Manufacturing and Automation VII", 1st edition, 2018
- Yusuf Altintas "Manufacturing Automation Metal Cutting Mechanics Machine Tool Vibrations and 2. CNC Design" 2nd edition, Cambridge University Press, 2012
- 3. Nussey, J "Arduino for Dummies", 1st edition, John Wiley & Sons, 2013
- 4. Boothroyd G Poli C and Murch L E "Automatic Assembly", 3rd edition, Marcel Dekker, 2014

EVALUATION PATTERN:

Assessment I (100 Marks)		Assessme (100 Mar			End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	То	tal	4.94	40	60		
				1	00		

*Roll Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided.

the Depar chanical Engineering,

te of Engineering and Technology, Arasur, Coimbatora - 641407.

q

B.E.

B.E. – ME – R2021 – C	2	Colli	e for emic rses	18 alous	KI	PRIE	
	PROFESSIONAL ELECTIVE	SI * Coim	hator	0*			
		-	Cate	gory	PEC	2	1
U21MEP30	ROBOTICS	L	т	Р	J	С	
		3	0	0	0	3	

En annan

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce the basic concepts, parts of robots and types of robots
- To make the student familiar with the various drive systems for robots sensors and their applications in robots
- To discuss the various applications of robots

 justification and implementation of robots

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the basic concepts motion of robots (Understand)

CO2: Identify the various robot components and operation (Understand)

CO3: Explain the actuators-drive systems and sensors (Understand)

CO4: Elaborate the concept of PLC and program using PLC (Apply)

CO5: Experience various industrial robot applications (Apply)

CO-PO MAPPING:

POs COs	P01	P02	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	1	1	-	1-	-	-	-	-	-	-	-	2	-
CO2	2	2	2	-	-	-	-	-	÷	-		.+	2	
CO3	3	2	2	-	-	-	-	-	-	-	-	-	2	-
CO4	3	2	3	-	-	-	-	-	-	-	-	1.	2	-
CO5	3	2	2	-		-	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION

Definition of a Robot - Basic Concepts - Robot configurations - Industrial brands and specification -Types of Robot drives - Basic robot motions - Point to point control - Continuous path control

UNIT II **ROBOT COMPONENTS AND OPERATIONS**

Robot Anatomy - Basic control system concepts - Control system analysis - Robot actuation and feedback - Types of Robot and effectors - Grippers - Tools as end effectors - Robot/End - Effort interface - Manipulators - director and inverse kinematics - Coordinate transformation - Brief Robot dynamics

UNIT III ACTUATORS, DRIVE SYSTEMS AND SENSORS

Characteristics of actuating systems - Comparison of actuating systems - Hydraulic actuators -Pneumatic devices - Electric motors - Sensor characteristics - Position sensors - Velocity sensors -

9

9

9

Acceleration sensors Force and pressure sensors - Torque sensors - Visible light and IR sensors -Touch and tactile sensors - Proximity sensors

PLC IN INDUSTRIAL ROBOTICS UNIT IV

Definitions of PLC - basic structure of PLC - working principles - Timer and Counter Instructions on delay and Off delay and retentive timer instructions - Retentive timers - Programming examples -Counter up and down instructions - combining counters and timers - Comparison and data handling instructions 9

INDUSTRIAL APPLICATIONS UNIT V

Selection of robots for industrial applications - Welding - Assembly - Material handling - Loading and unloading - Demonstration using beginner level robots

Contact Periods:

Lecture	45 Periods	Tutorial:	Practical: - Periods	Project	- Perious	
Lecture:	401 611000	1 GLOTTON.		Total	45 Periods	

TEXT BOOKS:

- 1. Mikell P. Groover Mitchell Weiss Roger N.Nagel Nicholas G.Odrey, "Industrial Robotics Technology Programming and Applications", 2nd edition, McGraw Hill Education, 2018
- 2. Frank Lamb "Industrial Automation", 2nd edition, McGraw Hill Education, 2013

REFERENCES:

- 1. James A Rehg "Introduction to Robotics in CIM Systems", 1st edition, Prentice Hall of India, 2002
- 2. Saeed B Niku, "Introduction to Robotics Analysis Control Applications", 3rd edition, John Wiley & Sons.2019
- 3. Richard D Klafter Thomas Achmielewski and Mickael Negin "Robotic Engineering an Integrated Approach", 3rd edition, Prentice Hall India, 2013

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	6			
Assessment I (100 Marks)		Assessme (100 Mar		Tetel laternal	End Semeste		
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations		
40	60	40	60	200	100		
	То	otal	Be de	40	60		
					100		

epartment. KPR Institute of Engineering and Technology,

Arasur, Coimbatore - 641407.

177

B.E. – ME – R2021	- CBCS	AC AC	ntre		K	PRIE
	PROFESSIONAL ELECTIVE	Carl Ci	ours	as	10.91	hom Deyon
		001	Cate	gory	PEC	2
U21MEP31	MEASUREMENTS AND CONTROLS	L	т	Р	L	с
		3	0	0	0	3

/ENGICEL

PRE-REQUISITES:

• Nil

COURSE OBJECTIVES:

- To know the basic concepts of measurements used in industry
- To discuss various methods of measurements
- To focus the control system concepts to interpret the data

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Illustrate the significance of mechanical measurements (Understand)

CO2: Identify the type of measurement instruments for industrial application (Understand)

CO3: Describe the block diagram algebra used in control system (Understand)

CO4: Explain control systems used in for stability analysis in industry (Understand)

CO5: Explain control systems used in for stability analysis in industry (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	-	-	-	2	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	2	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	2	-	-	-	-	-	-	-	-
CO4	3	2	14	-		2	-	•	-	-	-	-	-	-
CO5	3	2	-	-	-	2	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I BASIC CONCEPTS OF MEASUREMENT

Significance of Mechanical Measurements – Classification of measuring instruments – Generalized measurement system – Types of inputs – Desired – Interfering and modifying inputs – Static characteristics – Static calibration – Linearity – Static Sensitivity – Accuracy – Static error – Precision – Reproducibility – Threshold – Resolution – Hysteresis – Drift – Span and Range etc – Errors in measurement – Types of errors – Effect of component errors – Probable errors

UNIT II MEASURING DEVICES AND MANIPULATION OF DATA

Motion and dimensional measurement – Force – Torque – Shaft power – Pressure – Sound – Flow – Temperature measurement – Manipulating and comparing compensating devices – Data transmission – Instrument concerning voltage – Indicating and recording devices – Measurement system applied to micro and nano technology

9

9

9

INTRODUCTION TO CONTROL SYSTEMS UNIT III

Introduction to control systems - Classification of control system - Open loop and closed loop systems - Mathematical modelling of control systems - concept of transfer function - Block diagram algebra 9

STEADY STATE ANALYSIS UNIT IV

Transient and steady state analysis of first and second order system - Time Domain specifications -Step response of second order system. Steady - state error - Error coefficients - Steady state analysis of different type of systems using step - Ramp and parabolic inputs 9

STABILITY ANALYSIS UNIT V

Introduction to concepts of stability -The Routh criteria for stability - Experimental determination of frequency response - Stability analysis using Root locus - Bode plot and Nyquist Plots - State space modeling - Process control systems - ON - OFF control -P-I-D Control

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
Leoturo.	10 1 0.1000				Total	45 Periods

TEXT BOOKS:

- 1. O. E. Doeblin and D. N. Manik, "Measurements System", 7th edition, Tata McGraw Hill Education,2019
- A. K. Sawhney and Puneet Sawhney, "A Course in Mechanical Measurements and 2. Instrumentation and Control", 3rd edition, Dhanpat Rai, 2017

REFERENCES:

- 1. Thomas A Huge, "Measurement and Control Basics", 3rd edition, ISA Press, 2002
- Figiola RS & Beasley DE; "Theory and Design for Mechanical Measurements", 3rd edition, John 2. Wiley & Sons,2014
- Katsuhiko Ogata; "Modern Control Engineering", 4th edition Pearson Education, 2012 3.

epartment.

KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

B.E.

B.E. – ME – R2021 – CI	BCS		ontre		À	A KPRIE) ET
	PROFESSIONAL ELECTIVE		aden ourse		unal	Learn Beyor	
U21MEP32	INDUSTRY 4.0	* Coi	Disto L	atego T	ry: P P	EC C	
			3	0	0	3	

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart basic idea on Industry 4.0
- To provide students with good depth of knowledge of designing Industrial 4.0 Systems
- To know the opportunities and challenges in Industry 4.0 .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the basic concepts of Industry 4.0 and the other related fields (Understand)

CO2: Explain the conceptual framework of Industry 4.0 (Understand)

CO3: Illustrate the various advances in Industry 4.0 (Understand)

CO4: Explain various technologies associated with Industry 4.0 (Understand)

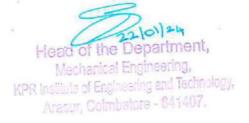
CO5: Illustrate the opportunities, challenges and future skills required for Industry 4.0 (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	-	-	-	-	1	-	-	-	-	-	1	2	-
CO2	3	-	-	-	-	1	-	-	-	-	-	1	2	-
CO3	3	-	-	-		1	-	-	-	-	-	1	2	-
CO4	3	-	-	-	-	1	-	-	-	-	-	1	2	-
CO5	3	-	1125	-	-	1	-	-	-	-	-	1	2	

SYLLABUS:

UNIT I **INTRODUCTION TO INDUSTRY 4.0**


Introduction - History of Industry 4.0 - Application areas of Industry 4.0 - Dissemination of Industry 4.0 - Overview on technologies of Industry 4.0 - Artificial intelligence, internet of things and industrial internet of things, additive manufacturing, robotization and automation - Current state of Industry 4.0 - Industry 4.0 to Industry 5.0 advances

UNIT II A CONCEPTUAL FRAMEWORK FOR INDUSTRY 4.0

Introduction - Main concepts and components of Industry 4.0 - State of art - Supportive technologies - Proposed framework for Industry 4.0.

ADVANCES IN ROBOTICS IN THE ERA OF INDUSTRY 4.0 UNIT III

Introduction - Recent technological components of robots - Advanced sensor technologies - Internet of robotic things - Cloud robotics and cyber - Physical systems - Industrial robotic applications -Manufacturing, maintenance and assembly

9

9

9

9

9

THE ROLE OF IOT & EXTENDED REALITY IN THE AGE OF INDUSTRY UNIT IV 4.0

Internet of things & internet of services - Interfaces - Introduction to extended reality (AR, VR & MR) - Hardware and software technology - Industrial applications of AR, VR and MR.

SMART MANUFACTURING APPLICATIONS AND OPPORTUNITIES UNIT V

Smart manufacturing - Smart devices and products - Predictive analytics - Opportunities -Challenges and skills for workers in the Industry 4.0 - Supply chain management - Readiness of industry - Case study - Smart Cars & self-driving cars

Contact Periods:

45 Periods Practical: - Periods Total: Tutorial: - Periods Lecture: 45 Periods

TEXT BOOKS:

- 1. Jesús Hamilton Ortiz," Industry 4.0 Current Status and Future Trends", 1st edition, IntechOpen,2020
- Diego Galar, Pasquale Daponte, Uday Kumar, "Handbook of Industry 4.0 and SMART Systems", 2. 1st edition, CRC Press, 2019

REFERENCES:

- 1. Bernard Maar, "Extended Reality in Practice", 3rd edition, John Wiley & Sons, 2021
- 2. Anand Nayyar, Akshi Kumar, "A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development", 1st edition, Springer, 2020
- 3. Uthayan Elangovan, "Smart Automation to Smart Manufacturing: Industrial Internet of Things", 1st edition, Momentum Press, 2019

	Contin	uous Internal As	sessments	3	
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal		40	60
				1	00

EVALUATION PATTERN:

Head of the Department. Mechanical Engineering, PR Institute of Engineering and Technology. Arasur, Coimbatore - 641407.

B.E. -

8.E. – ME – R2	(H)	A	entr Cade	e for	rxi	PRIE	
	PROFESSIONAL ELECTIVE	*	OUrs	es	01001	am seryond	S.
		oin	Gate	gory	PEC	:	
U21MEP33	MICROPROCESSOR & ARTIFICIAL INTELLIGENCE FOR INDUSTRY	L	T	Р	L	С	
		3	0	0	0	3	

A ERS

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To study the architecture of 8085 microprocessors and interfacing devices
- To know the basics of Artificial Intelligence and Machine learning
- To discuss the various applications AI in Industry 4.0 .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain architecture and instruction sets of 8085 (Understand)

CO2: Identify the various interfacing devices for 8085 and its working (Understand)

CO3: Explain the basics and functions of AI (Understand)

CO4: Elaborate the concept of Machine learning and its functions (Understand)

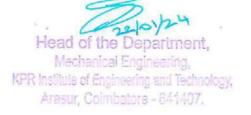
CO5: Experience various applications of AI in industries (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	2	-	÷	-	-	-	•	•	-	-	-	2	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO3	2	-	-	-	-	-	-	-	+	44	-	-	2	-
CO4	2	2	-	-		-	•	-	-	-	-	-	2	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-	2	-

SYLLABUS:

UNITI MICRO PROCESSOR


Evolution of microprocessors - Architecture - Functional block diagram - Instruction set - Addressing modes - Timing diagrams - Assembly language programming - Interrupts and memory interfacing

UNIT II INTERFACING OF MICROPROCESSOR

Interfacing of ADC - DAC - Stepper motor - Speed control of DC motor interfacing - Traffic light control and case study of washing machine control

UNIT III ARTIFICIAL INTELLIGENCE

Artificial Intelligence - History of AI - Foundations of AI - The AI - Environment - Societal Influences of AI - Application Domains and Tools - Associated Technologies of AI - Future Prospects of AI -Challenges of AI-NLP in AI - Computer Vision

182

9

9

9

INTRODUCTION TO MACHINE LEARNING UNIT IV

Linear Regression - Linear Regression Assignment - Logistic Regression - Naive Bayes - Model Selection - Advanced Regression - Tree Models - Model Selection - Practical Considerations-Boosting - Unsupervised Learning: Clustering - Principal Component Analysis - Investment Case Study -Telecom Churn Case Study

APPLICATIONS OF AI TO INDUSTRY 4.0 UNIT V

Smart factories - Predictive Analytics - Predictive maintenance - Computer vision - Cyber-physical systems - Industrial robots and Inventory Management

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods	
					Total	45 Periods	

TEXT BOOKS:

- 1. Krishna Kant, "Microprocessors and Microcontrollers Architecture, Programming and System Design", 8th edition, Prentice Hall of India,2011
- 2. Robert Bond Randall, "Vibration-Based Condition Monitoring, Industrial Aerospace and Automotive applications", 1st edition, John Wiley & Sons,2011

REFERENCES:

- 1. P Kaliraj T Devi, "Higher Education for Industry 4.0 and Transformation to Education 5.0", 1st edition, CRC Press, 2021
- 2. Rashmi Agrawal, Marcin Paprzycki- Neha Gupta, "Big Data- IoT- and Machine Learning Tools and Applications", 1st edition, CRC Press, 2020

	Contin	uous Internal As	sessments	5	
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	To	tal	ann 1 a	40	60
				1	00

EVALUATION PATTERN:

9

B.E. – ME – R20	(1) (1)	entre	for	1		PRIET
	PROFESSIONAL ELECTIVE	aden Durse	nic s /	inol.		
	*Coio			góry	PEC	2
U21MEP34	EMBEDDED SYSTEMS AND PROGRAMMING	L	Т	Р	L	С
		3	0	0	0	3

PRE-REQUISITES:

U21ECG02 - Basics of Electronics Engineering

COURSE OBJECTIVES:

- To gain knowledge in Embedded Systems.
- To Introduce students to the Embedded C programming fundamentals
- To understand and practice various sensors and actuators with Arduino.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the Embedded System Design Process (Understand)

CO2: Explain the Embedded Programming Concepts (Understand)

CO3: Program the MSP430 Micro controller (Apply)

CO4: Interface the sensors and Actuators with Arduino/MSP430 (Apply)

CO5: Build real time applications and Understanding ARM architecture in Raspberry pi (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	4	14	2	-	-	-	2	-
CO2	3	- *	-	-	-	-	-		-	-	-	-	2	-
CO3	3	-	-	-	-	2	-	-	-	=	-	-	2	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	-
CO5	3		-	-	3	-	-	-	2	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION TO EMBEDDED COMPUTING AND ARDUINO

Introduction to embedded systems and computer systems terminology – Embedded system design process – Introduction to the arduino microcontroller – Arduino hardware overview – Atmega micro controller – Arduino ide and sketch overview – Understanding arduino syntax

UNIT II EMBEDDED PROGRAMMING

Basics of embedded C programming for Arduino – Arduino libraries: library adding and removing – Variables, functions for analog sensor interfacing – Functions for digital sensor interfacing – Conditional statements & loops.

UNIT III EMBEDDED SYSTEM DESIGN WITH MSP430

Introduction to MSP430 microcontroller – MSP430 CPU Architecture – Programming methods for MSP430 – Introduction to lunchbox platform – Fundamentals of physical interfacing – Generating pulse width modulation (PWM) using timer capture mode – ADC operation in MSP430

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

9

9

SENSORS & ACTUATORS UNIT IV

Programming and interfacing of actuators: Liquid crystal display - Relay - DC motor with L298N -Motor driver controller- PWM technique - Servos - IoT networking devices programming and interfacing: GSM Modem - HC05 Bluetooth Transceiver

EMBEDDED APPLICATIONS & ARM UNIT V

Connected vehicles - Engine locking system Using GSM technology - GPS & GSM based tracker - ARM architecture versions - ARM architectures - SOC - Raspberry pi

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:

- 1. Wayne Wolf, "Computers as Components: Principles of Embedded Computing System Design", 2nd edition, Morgan Kaufman, 2008
- 2. Massimo Banzi, "Getting Started with Arduino", 3rd edition, O'Reilly,2015

REFERENCES:

- 1. Jimenez, Manuel, Palomera, Rogelio, Couvertier, Isidoro, "Introduction to Embedded Systems Using Microcontrollers and the MSP430", 1st edition, Springer,2014 2. Brian Evans, "Beginning Arduino Programming", 1st edition, Apress publisher,2011
- 3. Jonathan W.Valvano, "Embedded Microcomputer Systems Real Time Interfacing", 3rd edition, Cengage Learning,2012

	Contin	uous Internal As	sessments	5	
Assessment I (100 Marks)		Assessment II (100 Marks)			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal		40	60
				1	00

EVALUATION PATTERN:

Head of the Department, 198 Mechanical Engineering, the of Engineering and Technology, 9

PROFESSIONAL ELECTIVE

125		mba	Cate	gory:	: PEC	2
U21MEP35	SMART MANUFACTURING	L	т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- Impart knowledge of smart manufacturing for industry 4.0 and its key technologies
- Apply digitalization techniques to improve manufacturing processes and decision-making
- Assess the challenges and opportunities associated with implementing smart manufacturing systems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Describe the concept of Industry 4.0 and its relevance to Smart Manufacturing (Understand)

CO2: Discuss on IoT platforms and cloud computing and used in Smart Manufacturing (Understand)

CO3: Explain and use various hardware and software tools in Smart Manufacturing (Understand)

CO4: Communicate machine learning techniques and their application in Smart Manufacturing (Understand)

CO5: Define the device integration, data acquisition, and data storage (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	1	-	-	-	-	-	-	-	-	-	-	3	-
CO2	3	1	-	•	-	-	Э	-	-	-	-	=	3	-
CO3	3	1	-	-	-		-	-	-	-	-	-	3	-
CO4	3	1	-	-		× -		-	-	-	-	-	3	-
CO5	3	1			1	-	H		4	070		-	3	-

SYLLABUS:

UNIT I INTRODUCTION TO INDUSTRY 4.0

Globalization and Emerging Issues – The Fourth Revolution – LEAN Production Systems – Mass Customization – Smart and Connected Business Perspective – Smart Factories

UNIT II INTRODUCTION TO IIOT

Architectural Overview – Design principles and needed capabilities – IoT Applications – Sensing – Actuation – Basics of Networking – M2M and IoT Technology Fundamentals – Devices and gateways – Data management – Role of Cloud in IoT, Security aspects in IoT

UNIT III ELEMENTS OF IIOT

Hardware Components – Computing (Arduino, Raspberry Pi) – Communication – I/O interfaces – Software Components – Programming API's (using Python/Node.js/Arduino) for Communication Protocols – MQTT – ZigBee – Bluetooth – CoAP – UDP – TCP

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407. 9

9

9

MACHINE LEARNING FOUNDATION UNIT IV

Learning algorithms - Supervised - Unsupervised - Self learning - Feature learning - Models -Artificial Neural Networks - Decision trees - Regression analysis - Genetic algorithms - Free and open source software - Propriety software - Case studies 9

IOT SOLUTIONS FOR INDUSTRIAL APPLICATIONS UNIT V

Solution framework for IoT applications - Implementation of Device integration - Data acquisition and integration - Device data storage - Unstructured data storage on cloud/local server -Authentication - Authorization of devices

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Periods
					Total	45 Periods

TEXT BOOKS:

- 1. Sudip Misra, Chandana Roy and Anandarup Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0", 1st edition, CRC Press, Boca Raton, 2021
- Kamal, R., "Internet of Things: Architecture and Design", 1st edition, McGraw Hill Education, 2018 2

REFERENCES:

- 1. Pethuru Raj, Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", 1st edition, CRC Press,2017
- 2. Pfister, C., "Getting Started with the Internet of Things", 2nd edition, O'Reilly Media, Inc,2016
- 3. Tsiatsis, V., Karnouskos, S., Mulligan, C., Holler, J., Boyle, D, "Internet of Things: Technologies and Applications for a New Age of Intelligence", 1st edition, Elsevier Science, United Kingdom,2018
- Reddy, S., Thukral, R., Mishra, M., "Introduction to Internet of Things: A Practical Approach", ETI 4 Labs.2018

EVALUATION PATTERN:

Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal		40	60
				1	00

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology. Arasur, Coimbatore - 641407.

187

a

	Ce Ac	ader ourse	for	K	PRIE	
	Coin	Cate	gory	PE	2	
AUTOMOTIVE ENGINE AND SUBSYSTEMS	L	т	Р	J	С	
	3	0	0	0	3	

a nin

PRE-REQUISITES:

U21MEP36

U21ME403 - Thermal Engineering

COURSE OBJECTIVES:

- To impart knowledge on construction and principle of operation of SI and CI Engines.
- To learn about engine components, combustion, cooling and lubrication systems.
- To explore the recent developments in engine technology.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the operational features of IC Engines (Understand)

CO2: Discuss on fuels injection and ignition techniques in IC Engines (Understand)

CO3: Identify the suitable cooling and lubricating systems (Understand)

CO4: Describe the various internal combustion techniques for an IC engine (Understand)

CO5: Illustrate the recent trends in injection systems of engine technology (Understand)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	1	-	-	÷	-		-	-	-		x -	-	1
CO2	3	2	-	2	-	-	-	-	-	-	-	1	-	1
CO3	3	2	-	2	-	-	-	-				1	-	1
CO4	3	1	-	2	=	-	-	.=.	-	-	-	1	÷	1
CO5	3	1	-	-	2	-	-	-	-	-	-	2	-	1

SYLLABUS:

UNIT I ENGINE BASIC THEORY

Engine types – Otto, diesel, dual operating cycles – Engine design and operating parameters – Two and four stroke engines – Typical performance curves for automobile engines – Two stroke engine – Performance and pollution aspects

UNIT II FUEL SUPPLY AND IGNITION SYSTEMS

Theory of carburetion and carburettors - System - Conventional ignition systems, advance mechanisms

UNIT III COOLING AND LUBRICATING SYSTEMS

Air cooling and water cooling – Thermo syphon cooling, forced cooling systems. Fins and radiator – design aspects. Theory of lubrication – Types of lubrication, splash lubrication system, petrol lubrication system, forced feed lubrication system

9

9

AIR MOTION, COMBUSTION AND COMBUSTION CHAMBERS UNIT IV

Premixed combustion, diffused combustion, laminar and turbulent combustion of fuels in engines. Droplet combustion - combustion in SI and CI engines. - Cylinder pressure data and heat release analysis. Optimized design of combustion chambers. Supercharger and Turbochargers. 9

NEW ENGINE TECHNOLOGY UNIT V

Lean Burn engine - Different approaches to lean bum - LHR engine - Surface ignition concept catalytic ignition - homogeneous charge compression ignition - variable valve timing - Multi Port Injection System - Gasoline Direct Injection - Common Rail Direct Injection - Recent Trends.

Contact Periods:

Contact					100 million (1990)	Designet	- Periods
Lecture:	45 Periods	Tutorial:	- Periods	Practical:	 Periods 	Project	- Ferious
Lecture.	401 011000					Total	45 Periods

TEXT BOOKS:

- "Internal Combustion Engine Fundamentals",1st edition, McGraw Hill 1. J.B.Heywood, Education, 2017
- 2. V.Ganesan, "Internal Combustion Engines", 4th edition, Tata McGraw Hill Education, 2017

REFERENCES:

- 1. M.Khovakh, "Motor Vehicle Engines", 1st edition, Manakin Press, 2016
- 2. M. L. Mathur, R. P. Sharma, "Internal Combustion Engines", 2nd edition, Dhanpat Rai Publications,2016
- W.H.Crouse and A.L.Anglin, "Automotive Emission Control", 3rd edition, McGraw Hill 3 Education,2006

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	3	
Assessme (100 Mark		Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	otal		40	60
				1	00

0124 Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

PROFESSIONAL ELECTIVE

			Cate	gory	: PEC	2
U21MEP37	ELECTRICAL VEHICLE TECHNOLOGY	L	т	Р	J	С
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To study the fundamental concepts of hybrid, electric and fuel cell vehicles.
- To learn various aspects of hybrid and electric drive system.
- To familiarize various electric drives suitable for hybrid electrical vehicles.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Discuss the different configurations of electric vehicles (Understand)

CO2: Comprehend the properties of batteries and its types (Understand)

CO3: Explain the electric vehicle drive systems (Understand)

CO4: Assess various aspects of hybrid and electric drive train that can be used (Understand)

CO5: Develop a logical progression for hybrid electric vehicle systems with up-to-date information (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	P012	PSO1	PSO2
CO1	3	-	1	-	2	-	-	-	-	-	-	-	2	-
CO2	3	-	1	-	2	-	-	-	-	-	-	-	2	-
CO3	3	-	1	-	2	-	-	-	-	-	-	-	2	-
CO4	3	-	1	-	2	-	-	-	-	-	-	-	2	
CO5	3	-	1	-	2		-	-	-	-	-	-	2	-
со	3	-	1	-	2	-	-	-	-	-	-	-	2	-

SYLLABUS:

UNIT I ELECTRIC VEHICLES

Introduction – Components – vehicle mechanics – Road way fundamentals – vehicle kinetics – Dynamics of vehicle motion – Propulsion System Design

UNIT II BATTERY TECHNOLOGY

Basics – Types – Parameters – Capacity – Discharge rate – State of charge – state of Discharge – Depth of Discharge – Technical characteristics – Battery pack Design – Properties of Batteries – battery disposal

UNIT III ELECTRICAL POWER DRIVES

Motor and Engine rating – Requirements – DC machines – three phase A/c machines – Induction machines – Permanent magnet machines – Switched reluptance machines

Flead of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

-		

9

9

ELECTRIC VEHICLE DRIVE TRAIN UNIT IV

Transmission configuration - Components - gears - differential - Clutch - Brakes - Regenerative braking - Motor sizing

HYBRID ELECTRIC VEHICLES UNIT V

Types - Series - Parallel and series - Parallel configuration - Design - Drive train - Sizing of components - Case Studies: Design of a Hybrid Electric Vehicle (HEV) and Battery Electric Vehicle (BEV)

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Project	- Penous
Leotaro.	10				Total	45 Periods

TEXT BOOKS:

1. Iqbal Hussain, "Electric & Hybrid Vehicles - Design Fundamentals", 2nd edition, CRC Press, 2011

2. James Larminie, "Electric Vehicle Technology Explained", 2nd edition, John Wiley & Sons, 2013

REFERENCES:

- 1. Mehrdad Ehsani, Yimin Gao, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals", 3rd edition, CRC Press, 2010
- 2. Sandeep Dhameja, "Electric Vehicle Battery Systems", 2nd edition, Newnes, 2010
- 3. Mi, M. Abul Masrur, "Hybrid Electric Vehicles: Principles and Applications with Practical", 2nd edition, CRC Press, 2013

	Contin	uous Internal As	sessments		
Assessme (100 Mark		Assessme (100 Mar		T t Historial	End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	Тс	otal		40	60
				10	00

EVALUATION PATTERN:

Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407.

9

Desinda

Q

B.E. – ME – R20	1 sul	Cen Aca:	tre f dem	er ic		PRIET
	PROFESSIONAL ELECTIVE	Cou	rses	100	in the	am Deyond
		Point	Cate	göry	: PEC	2
U21MEP38	SMART MOBILITY AND VEHICLE SYSTEMS	L	т	Ρ	J	с
		3	0	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart knowledge various smart mobility technologies.
- To learn about smart mobility technology enablers and disruptors.
- To explore the recent developments in intelligent vehicles and its motion control system

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the latest technologies in smart mobility (Understand)

CO2: Discuss on various enablers in smart mobility (Understand)

CO3: Describe the various smart mobility disruptive platforms (Understand)

CO4: Explain the key techniques available in intelligent vehicles (Understand)

CO5: Describe the motion control and assistance systems in intelligent vehicles (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	-	-	-	1	-	-	-	-	-	-	1	1	-
CO2	2	-	-	-	1	-	-	-		-	-	• 1	1	-
CO3	2	-	-	-	1	-	-	-	-	-	-	1	1	-
CO4	2	-	-	1.7	1	-	-	-	-	-	-	1	1	-
CO5	2		-	-	1	-	-	-	-	-	-	1	1	

SYLLABUS:

UNIT I SMART MOBILITY TECHNOLOGIES

Introduction – Foundational technologies – PNT and GIS – Wireless communication – Mobile computing – Block chain – IOT – Artificial Intelligence – Robotics – Electrification

UNIT II SMART MOBILITY TECHNOLOGY ENABLERS

Intelligent infrastructure – Connected mobility – Automated mobility – E-Mobility – Micro mobility – Active – Soft – Zero – Impact Mobility – Inclusive mobility – Context Awareness Systems (CAS)

UNIT III SMART MOBILITY DISRUPTORS

Kano model – Disruptive mobility platforms – Shared mobility – Mobility – As a Service (Maas) – Mobility on Demand (MOD) – Seamless Integrated Mobility Systems (SIMS) – Last – Mile Delivery – Vehicle – As a Service (VaaS) – Gig Economy and Passenger Economy. Smart mobility during and post pandemic

192

9

9

UNIT IV AUTONOMOUS INTELLIGENT VEHICLES

Introduction – Key technologies. Road detection and tracking – Vehicle detection and tracking – Multiple – Sensor based multiple – Object Tracking. Vehicle localization and navigation – Integrated DGPS/IMU positioning approach – Global views. Fundamentals of driver assistance. Intelligent Speed Adaptation (ISA)

UNIT V ADVANCED VEHICLE MOTION CONTROL

Longitudinal motion control for intelligent vehicles – Adaptive and cooperative cruise control – Vehicle lateral and steering control. Integral safety – Lane change assistance – Proactive Pedestrian Protection – Parking Assist – Post – Crash Support Systems

Contact Periods:

Lecture:	45 Periods	Tutorial:	- Periods	Practical:	 Periods 	Project	- Periods
							45 Periods

TEXT BOOKS:

- Alaa Khamis, "Smart Mobility Exploring fundamental technologies and wider impacts", 1st edition, Apress Media, Canada, USA, 2021.
- Hong Cheng, "Advances in Computer Vision and Pattern Recognition Autonomous Intelligent Vehicles - Theory, algorithms, and implementation", Springer-Verlag, London, 2011.

REFERENCES:

- 1. Barbara Flugge, "Smart Mobility Connecting Everyone Trends, concepts and best practices", 1st edition, Springer,2017
- Gerrit Meixner, "Smart Automotive Mobility Reliable technology for the mobile human", 2nd edition, Springer, 2020
- 3. Azim Eskandarian, "Handbook of Intelligent Vehicles", 2nd edition, Springer, 2012

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	5	
	(100 Marks) (100 Individual ssignment / ase Study / Seminar / Test Seminar	Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ		*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal	a ser la	40	60
				1	00

0124 Department, Mechanical Engineering,

Mechanical Engineering, KPR institute of Engineering and Technology, Arasur, Colmbatore - 641407.

B.E

8.E. – ME – R20	21 – CBCS	nstitute OC AC	nire ;ada	for mic	K	PRIET) Г
7	PROFESSIONAL ELECTIVE	1200	ours	ses	* 160	im Beyond	
		CC.	Cate	gory	PEC		
U21MEP39	BIOENERGY CONVERSION TECHNOLOGIES	L	Т	P	J	С	
		3	0	0	0	3	

/ coming

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To introduce the energy conversion technologies related to biomass
- To familiarize the properties of biomass and its energy products
- To analyze the feasibility of power production from biomass sources

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Develop knowledge in properties of biomass and energy conversion process (Understand)

CO2: Compare the characteristics of products obtained from biomass pyrolysis (Understand)

CO3: Understand the basics of biomass gasification and gasifier design (Understand)

CO4: Assess the potential of electrical power production from biomass (Understand)

CO5: Understand national and international standards of biofuels (Understand)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	2	2	2	-	-	-	2	-	-	-	-	-	2	-
CO2	2	2	2	-	-	-	2	-	-	-	-	-	2	-
CO3	2	2	2	-	-	-	2	-	-	-	-	-	2	-
CO4	2	2	2	-	-	-	2	-	-	-	-	-	2	
CO5	2	2	2	-	-	-	2	-	-	-	-	-	2	-

SYLLABUS:

UNIT I INTRODUCTION TO BIOMOLECULES

Classification of amino acids - Carbohydrates and nucleotides - Structure and properties of carbohydrate polymers - Proteins and nucleic acids - Classification and utility of lipids and fatty acids - Functional roles of biomolecules - Energy carriers - Enzyme cofactors and biochemical regulation

- Biosynthesis and Metabolism

UNIT II BIOMASS

Biomass as energy source - Sources - Biomass conversion processes - Biological - Thermal -Chemical - Hybrid conversions - Application of biomass conversion products - Biomass properties for conversion process - Physical properties : Particle size, distribution, heat capacity and thermal conductivity - Thermal properties : Proximate, Ultimate and heating value analysis - Biomass pretreatment processes - Biodiesel and bioethanol : Sources and extraction methods

UNIT III TORREFACTION AND LIQUEFACTION

Torre faction - products obtained - properties of terrified biomass - Physical and chemical composition changes - Torre faction as pretreatment process - Pyrolysis - Types - Effects of process

9

9

9

195

parameters – Product characterization techniques – Oxidation stability – Bio-oil upgradation – Applications – Liquefaction – Direct and indirect methods – Advanced liquefaction techniques

UNIT IV BIOMASS GASIFICATION

Biomass gasification – Chemistry – Types of gasifiers – Gasifier design: TDR, throughput, A/F ratio and equivalence ratio calculations – Advanced gasification – Fluidized bed gasifier – Component design – Cold fluidization tests – Electrical power production – Biomass combustion – Types of combustors – Co-combustion and Co-firing – Applications – Eutectic point of biomass ash

UNIT V BIOFUELS STANDARDS & POWER GENERATION

Physical and chemical characteristics of biofuels – Biomass – Wood gas – Biomethane – Ethanol – Biodiesel – Wood oil – Bioblends – Indian and International standard specifications – Bioblends – Adaptation of biofuel in various applications – Biomass integrated gasification/combined cycles systems – Sustainable co-firing of biomass with coal – Biofuel economy.

Contact Periods:

Lecture: 45 Perio	ods Tutorial: - Periods	Practical: - Periods	Project	 Periods
			Total	45 Periods

TEXT BOOKS:

1. Sergio C. Capareda, "Introduction to Biomass Energy Conversions", 1st edition, CRC Press, 2013

2. Prabir Basu, "Biomass Gasification, Pyrolysis and Torre faction", 2nd edition, Academic Press, 2013

REFERENCES:

- 1. Erik Dahlquist, "Biomass as Energy Source: Resources, systems and applications", 2nd edition, CRC Press,2012
- 2. Anju Dahiya, "Bioenergy: Biomass to Biofuels", 3rd edition, Academic press, 2014
- D.P.Kothari, K.C Singal and Rakesh Ranjan "Renewable Energy Sources And Emerging Technologies", 2nd edition, Prentice Hall of India, 2011

EVALUATION PATTERN:

	Contin				_
	Assignment / Case Study / eminar / Mini Viritten Cas Sem	Assessme (100 Mar			End Semester
*Individual Assignment / Case Study / Seminar / Mini Project / MCQ		*Individual Assignment / Case Study / Seminar / Mini Project / MCQ	Written Test	Total Internal Assessments	Examinations
40	60	40	60	200	100
	То	tal	1000	40	60
				10	0

Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Aresur, Colmbatore - 641407

E. – ME – R2021 – (CBCS	Centre f			PRIE
	PROFESSIONAL ELECTIVE	Academ Course		nolog	am Deya
U21MEP40	ENERGY STORAGE DEVICES	* Coimbal L	T	ry: P P	EC C
		3	0	0	3

ensineering

12

-

PRE-REQUISITES:

U21CY101 - Engineering Chemistry

COURSE OBJECTIVES:

- To acquire knowledge on energy storage devices
- To understand the operation and performance of energy storage devices
- To apply the concept of charge controllers for real time applications

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Explain the concepts of energy storage technologies (Understand)

CO2: Summarize fabrication and performance evaluation of primary batteries (Understand)

CO3: Describe the fabrication and performance evaluation of secondary batteries (Understand)

CO4: Infer the importance and classification of fuel cells (Understand)

CO5: Illustrate the concept of charge controllers (Understand)

COURSE ARTICULATION MATRIX:

POs Cos	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	-	-	-	1	2	- 1
CO2	3	2	1	-	-	-		-	-	-	-	1	2	1
CO3	3	2	1	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	-	-	-	-	-	-	-	-	1	2	1
CO5	3	2	1	-	-	-	-	-	-	-	-	1	2	1

SYLLABUS:

UNIT I ENERGY STORAGE TECHNOLOGIES

Types – Thermal – Mechanical – Hydrogen – Electro chemical – Battery parameters – Power density – Nominal voltage – Cut off voltage – Float voltage – Nominal capacity – Service time – Cycle life

UNIT II PRIMARY BATTERIES

Dry cells and alkaline batteries – Fabrication techniques – Packing – Rating – Effect of temperature – Internal resistance – Charging – Discharging – Safety

UNIT III SECONDARY BATTERIES

Lead acid – Lithium polymer – Lithium ion and air flow batteries – Construction – Working principle – Characteristics – SOC – DOD – SOH – ROD – C rating – E rating – Applications

UNIT IV FUEL CELLS

Hydrogen – Alkaline – Solid oxide fuel cells – Construction – Working principle – Characteristics – Thermodynamic analysis – Thermal effect – Reversible voltage – Applications

Head of the Department, Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Colmbatore - 641407. 9

196

9

9

CHARGE CONTROLLERS UNIT V

Types – Standalone, series, shunt – Integrated charge controller – Battery balancing, monitoring and management system - Safety measures - Applications

Contact Periods:

Total: 45 Periods Practical: - Periods Tutorial: - Periods Lecture: 45 Periods

TEXT BOOKS:

- 1. Viswanathan, B., Scibioh, Aulice M., "Fuel cells principles and applications", 1st edition, University Press,2009
- 2. Dhameja, Sandeep, "Electric vehicle battery systems", 1st edition, Newnes, 2013

REFERENCES:

- 1. Christopher M. and Brett A., "Electrochemistry Principles, Methods and Applications", 2nd edition, Oxford University,2004
- Newman J.S. and Thomas Alyea K.E., "Electrochemical Systems" 3rd edition, John Wiley & 2. Sons,2004
- 3. David Elliott, "Energy Storage Systems", 1st edition, IOP Publishing,2017

EVALUATION PATTERN:

Assessme (100 Mark		Assessment II (100 Marks) Total Internal			End Semester
(100 Marks) *Individual Assignment / Case Study / Seminar / Project / MCQ	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations	
40	60	40	60	200	100
	То	otal		40	60
				1	100

01/24 Head of the Department,

Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore - 641407.

PROFESSIONAL ELECTIVE

J21MEP41		C	atego	ry: PE	C
U21MEP41	ENERGY CONSERVATION IN INDUSTRIES	Category: PEC L T P 3 0 0	С		
		3	0	0	3

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To understand the types of fuels used in Industries and their characteristics
- To know the techniques adopted for performance evaluation of thermal utilities
- To learn the working principle employed in VCRS and VAM systems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

- CO1: Estimate the stoichiometric air for fuel and suggest measures for efficient combustion (Understand)
- CO2: Discover the cause for underperformance of thermal utilities and suggest suitable remedial measures (Understand)

CO3: Analyze the factors affecting COP of a VCR and VAR system (Understand)

CO4: Evaluate the performance of induction motors and transformers (Apply)

CO5: Assess energy conservation avenues of thermal and electrical utilities (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	1	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	1	-	-	-	-7	-	-	-	-		-	-	-
CO4	3	1	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	1		-	-	-	-	-	-	-	~	-	-	-

SYLLABUS:

UNIT I BOILERS

Types – Performances evaluation via direct and indirect method – Energy conservation avenues – Properties of steam – Assessment of steam distribution losses – Steam trapping – Condensate and flash steam recovery system – Opportunities for energy saving in steam consumption systems

UNIT II FURNACES AND THERMIC FLUID HEATERS

Furnaces and Thermic Fluid Heaters: Types – Performances evaluation via direct and indirect method – Energy conservation avenues – Insulation and refractory: types and application

UNIT III HVAC AND WASTE HEATR ECOVERY

VCRS – Performance assessment – Energy savings opportunities – VAM: working, types, benefits, comparison with vapor compression system – WHR systems: Classification – Benefits – Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, thermo compressor – CHP – Poly generation

9

9

15 Periods

9

UNIT IV ELECTRICAL SYSTEMS AND INDUCTION MOTORS

Electricity billing – Demand side management – Power factor improvement transformer losses – Harmonics induction Motors: Types – Losses – Performance assessment adopting direct and indirect method – Factors affecting motor performance – Energy efficient motors

UNIT V ENERGY CONSERVATION IN ELECTRICAL UTILITIES

Performance assessment and energy conservation avenues in: Fans – Blowers – Pumps – Air compressors – Illumination systems – Cooling towers

Contact Periods:

Lecture: 45 Periods Tutorial: - Periods Practical Periods	Lecture:	45 Periods	Tutorial:	- Periods	Practical: - Periods	Total.	401 611040
---	----------	------------	-----------	-----------	----------------------	--------	------------

TEXT BOOKS:

- Alwyn Clarenece asts, A., Pon Vengatesh, R., "Electrical energy generation utilisation and conservation", 1st edition, Bennett Coleman, 2007
- Conservation, 1st edition, Bernett Coreman, 2007
 Rao, Sunil S., "Utilization generation and conservation of electrical energy", 1st edition, Khanna Publisher, 2005

REFERENCES:

- K. Nagabhushan Raju, "Industrial Energy Conservation Techniques: (concepts, Applications and Case Studies)", 1st edition, Atlantic Publishers, 2007
- Albert Thumann and Paul Mehta D, "Handbook of Energy Engineering", 7th edition, The Fairmont Press, 2013
- Steve Doty, Wayne Turner C, "Energy Management Handbook", 7th edition, The Fairmont Press, 2009

	Contin	uous Internal As	sessments	3	
Assessment I (100 Marks)		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	ual ent / udy / ar / MCQ		Examinations
40	60	40	60	200	100
	Тс	otal	40	60	
				1	100

EVALUATION PATTERN:

Head of the Department, Mechanical Engineering, trasur, Coimbatore - 641407.

B.E. – ME – R2		entre		K	PRIET
	PROFESSIONAL ELECTIVE	aden lourse		2) .L	.eam Beyond
U21MEP42	The Co	C.	atego	-	
0211112742	ENERGY MANAGEMENT AND EQUIPMENT DESIGN	L	T	Р	С
		3	0	0	3

adineeria.

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To inculcate the importance of energy conservation and management
- To learn the process of energy auditing
- To design and optimize the energy systems

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Realize the present energy scenario and the need for energy conservation measures (Understand)

CO2: Explain the process of energy audit for optimizing the energy requirements (Apply)

CO3: Design the energy equipment for heat transfer applications (Apply)

CO4: Develop the model for the typical energy systems (Apply)

CO5: Apply the different types of optimization techniques for energy systems (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
CO1	3		-	-	-		2	-	-	π.	-	1	-	-
CO2	3	3	1	-	-	-	2	-	-	-	-	1	-	-
CO3	3	3	1	-	-	1441	2		-	-	-	1	-	-
CO4	3	3	1	-	-	-	2	-	-	-		1	-	_
CO5	3	3	1	-	-	-	2	-	-	-	-	1		

SYLLABUS:

UNIT I IMPORTANCE OF ENERGY MANAGEMENT AND CONSERVATION

Energy management as a profession – Primary and secondary sources of energy – Energy Scenario world and India – Energy resources availability in India – Energy consumption pattern – Energy intensive industries – An overview – Energy conservation and energy efficiency – Needs and advantages – Energy conservation act

UNIT II ENERGY AUDIT

Definition – Need – And types of energy audit; Energy management (audit) approach: Understanding energy costs – Benchmarking – Energy performance – Matching energy use to requirement – Maximizing system efficiencies – Optimizing the input energy requirements – Energy auditing – Types – Methodologies – Barriers – Energy audit instruments – Duties and responsibilities of energy managers and auditors – Energy audit questionnaire

200

9

9

DESIGN OF ENERGY EQUIPMENT

Primary energy analysis - Energy balance for closed and control volume systems - Applications of energy analysis for selected energy system design - Modeling overview - Levels and steps in model development - Examples of models - Curve fitting and regression analysis

MODELING OF ENERGY SYSTEMS UNIT IV

Modeling of energy systems - Heat exchanger - Compressors - Solar collectors - Distillation -Rectification of turbo machinery components - Refrigeration systems - Information flow diagram -Solution set for nonlinear algebraic equations - Successive substitution - Newton Raphson Method

OPTIMIZATION OF ENERGY SYSTEMS UNIT V

Objectives - Constraints - Problem formulation - Unconstrained problems - Necessary and sufficient Conditions - Constrained optimization - Lagrange multipliers - Constrained variations - Linear Programming - Simplex tableau - Pivoting - Sensitivity analysis - New generation optimization techniques

Contact Periods:

Total: 45 Periods Practical: - Periods Tutorial: - Periods Lecture: 45 Periods

TEXT BOOKS:

- 1. Kreith, F. and Goswami, D. Y., "Energy management and conservation handbook", 2nd edition, CRC Press,2018
- Stoecker W. F., "Design of Thermal Systems", 3rd edition, McGraw Hill Education, New Delhi, 2017 2

REFERENCES:

- 1. Doty, S. and Turner, W.C., "Energy management handbook", 9th edition, CRC Press, 2019
- 2. C. Balaji, "Essentials of Thermal System Design and Optimization", 1st edition, CRC Press, 2018
- Jaluria, Y., "Design and Optimization of Thermal systems", 2nd edition, CRC Press, 2013 3.

EVALUATION PATTERN:

	Contin	uous Internal As	sessments	3	
Assessment I (100 Marks)		Assessme (100 Mar		Total Internal	End Semester
*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	*Individual Assignment / Case Study / Seminar / Project / MCQ	Written Test	Assessments	Examinations
40	60	40	60	200	100
	То	otal	40	60	
					00

9

B.E. - ME

B.E. – ME – R2021 – C	CBCS	Institute	enti	e foi		PRIET	
	PROFESSIONAL ELECTIVE	No. C	Our	linic		earn Beyond	
U21MEP43	4	* 60	Cate	gory	BS	3	
UZ TIMEP43	COMPREHENSION - I	L	Т	Ρ	J	С	
		3	0	0	0	3	

LERDING ...

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart knowledge on engineering mechanics and its applications
- To disseminate expertise on fluid mechanics and thermal science .

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Solve problems on mechanics of statics and dynamics bodies (Apply)

- CO2: Apply the practical engineering problems involving stress and strain analysis in elementary structural members, such as bars and beams (Apply)
- CO3: Apply velocity and acceleration calculation for various mechanisms and to design various loaded members (Apply)

CO4: Apply the principles of fluid mechanics for solving fluid flow problems (Apply)

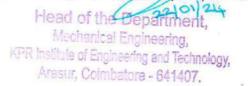
CO5: Solve problems related to thermal applications (Apply)

CO-PO MAPPING:

POs COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	P011	P012	PSO1	PSO2
CO1	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO2	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO5	3	3	3	-	-	-	-	-	-	-	-	2	3	-

SYLLABUS:

UNITI ENGINEERING MECHANICS


Free - Body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations - Collisions

UNIT II MECHANICS OF MATERIALS

Stress and strain - Elastic constants, Poisson's ratio; Mohr's circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Euler's theory of columns; energy methods; thermal stresses; strain gauges and rosettes

UNIT III THEORY OF MACHINES AND MACHINE DESIGN

Displacement - Velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts - Design for static and dynamic loading; failure theories, principles of the design of machine

9

9

~

elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches - Springs

FLUID MECHANICS UNIT IV

Fluid properties; fluid statics, manometry - Buoyancy - Forces on submerged bodies - Stability of floating bodies; control - Volume analysis of mass - Momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids - Boundary layer - Elementary turbulent flow - Flow through pipes -Head losses in pipes - Bends and fittings 9

THERMAL SCIENCES UNIT V

Thermodynamics: Thermodynamic systems and processes; properties of pure substances - Zeroth and first laws of thermodynamics - Calculation of work and heat in various processes; second law of thermodynamics; availability and irreversibility; thermodynamic relations

Applications: Power Engineering: Air and gas compressors; vapour and gas power cycles - Concepts of regeneration and reheat - I.C. Engines: Air-standard Otto - Diesel and dual cycles

Heat-Transfer: Modes of heat transfer; one dimensional heat conduction - Heat transfer through fins; unsteady heat conduction - Lumped parameter system - Heat exchanger performance - LMTD and NTU methods

Contact Periods:

Lecture:	45 Periods	Tutorial:	0 Periods	Practical: - 0 Periods	Project	- 0 Periods
					Total	45 Periods

TEXT BOOKS:

- Bhavikatti, S. S., and K. G. Rajashekarappa. Engineering Mechanics, 8th edition, New Age 1 International, 2021
- Gere, James M., and Stephen P. Timoshenko. "Mechanics of materials, 3rd edition, CBS 2. Publisher, 2021
- Rattan, Sarjit S. Theory of machines, 1st edition, Tata McGraw-Hill Education, 2017 3.
- Bansal, R. K., A textbook of fluid mechanics, 10th edition, Laxmi Publication, 2019 4

REFERENCES:

- 1. Nag, P. K. "Engineering thermodynamics", 6th edition, McGraw Hill Education, 2017
- 2. Cengel, Yunus A., Michael A. Boles, and Mehmet Kanoğlu. Thermodynamics: an engineering approach, 8th edition, McGraw-hill, 2017
- 3. Sachdeva, R. C. Fundamentals of Engineering Heat and Mass Transfer (SI Units), 1st edition, New Age International Publishers, 2017

Assessment I (100 Marks)	Assessme (100 Mar			-		
Individual Assignment / Seminar / MCQ *Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ	Written Test	Total Internal Assessments	End Semeste Examinations	
40	60	40	60	200	100	
	Total	1220-01-	1.00	40	60	
· 64				1	00	

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

le Department, Mechanical Engineering, KPR institute of Engineering and Technology, Arasur, Coimbatore - 641407.

a

B.E. – ME – R2021 – C	UIII C	entre for cademic	Dec			
	PROFESSIONAL ELECTIVE		Cate	gory	: BSC	2
U21MEP44	COMPREHENSION - II	L	т	Р	J	с
		3	0	0	0	3

engineeri

1).

PRE-REQUISITES:

Nil

COURSE OBJECTIVES:

- To impart knowledge on engineering materials and manufacturing.
- To disseminate expertise on metrology and industrial engineering.

COURSE OUTCOMES:

Upon completion of the course, the student will be able to

CO1: Interpret the phase diagrams of materials for the application of engineering field (Apply)

CO2: Apply different metal forming process to various engineering applications (Apply)

CO3: Apply various machining processes for industrial applications (Apply)

CO4: Apply the knowledge of measurements in metrology and CIM (Apply)

CO5: Analyse the real time problems in industry for effective implementation of planning and control (Apply)

CO-PO MAPPING:

POs COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3		-	-	-	-	-	-	-	2	3	-
CO2	3	3	3	-	-	-	-		-	-	-	2	3	-
CO3	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	2	3	-
CO5	3	3	3	014	-	-	-	-	-	-	-	2	-	3

SYLLABUS:

ENGINEERING MATERIALS UNIT I

Structure and properties of engineering materials - Phase diagrams - Heat treatment - Stress -Strain diagrams for engineering materials

MANUFACTURING PRACTICES -I UNIT II

Casting - Forming and Joining Processes: Different types of castings - Design of patterns - Moulds and cores; solidification and cooling; riser and gating design - Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling - Extrusion, drawing) and sheet (shearing, deep drawing - Bending) metal forming processes; principles of powder metallurgy - Principles of welding - Brazing - Soldering and adhesive bonding

MANUFACTURING PRACTICES -II UNIT III

Machining and Machine Tool Operations: Mechanics of machining; basic machine tools; single and multi-point cutting tools - Tool geometry and materials - Tool life and wear; economics of machining;

9

9

204

principles of non - Traditional machining processes; principles of work holding - Jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming 9

METROLOGY AND COMPUTER INTEGRATED MANUFACTURING

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly - Basic concepts of CAD/CAM and their integration tools

INDUSTRIAL ENGG,

Forecasting models – Aggregate production planning – Scheduling – Materials requirement planning - Deterministic models - Safety stock - Inventory control systems - Linear programming - Simplex method - Transportation - Assignment - Network flow models - Simple queuing models - PERT and CPM

Contact Periods:

1	45 Periods	Tutorial:	0 Periods	Practical:	- 0 Periods	Project	- U Fenous
Lecture:	45 Perious	T GEOTTAIL				Total	45 Periods

TEXT BOOKS:

- 1. Jain, R. K. "Production technology Manufacturing processes, technology and automation", 4th edition, Khanna Publication, 2013
- Jindal, U. C. "Material science and metallurgy", 1st edition, Pearson Education India, 2012
- Khanna, O. P. "Industrial engineering and management", 2nd edition, Dhanpat rai publications, 2. 3

REFERENCES:

2017

- 1. Ghosh, Amitabha, and Asok Kumar Mallik. "Manufacturing science. Vol. 432. Chichester: Ellis Horwood, 1986
- 2. Kalpakjian, Serope. "Manufacturing processes for engineering materials", 6th edition, Pearson Education India, 2018
- 3. Buffa, Elwood Spencer. "Modern production/operations management", 8th edition, Wiley Publication, 2007

Assessment I (100 Marks)	Assessme (100 Mar			End Semester		
Individual Assignment / Seminar / MCQ *Individual Assignment / Seminar / MCQ	Written Test	Individual Assignment / Seminar / MCQ	Written Test	Total Internal Assessments	Examinations	
40	60	40	60	200	100	
	40	60				
	100					

EVALUATION PATTERN:

*Role Play / Group Discussions / Debates / Oral Presentations / Poster Presentations / Technical presentations can also be provided. Course Designer can choose any one / two components based on the nature of the course.

0 Doriode

and the network of president stage, the second stage of the president stage of the second stage of the sec AVERITOR PLACE AND ADDRESS & BATCHINGS THE ALL MODEL OF THE and the second A DE A DESEMPTION OF THE OWNER Manual Processing States A second s the statement and an external relation of \$2.3.5 bits, a We consider you a long space of et committee and destend the Comments William Contract and the second A SANT SERVICE HERE & COMPANY But service it's them would and an and an . . . Eliment estated John Charles Constituted a WEAK and